The computation of relatedness between two fragments of text in an automated manner requires taking into account a wide range of factors pertaining to the meaning the two fragments convey, and the pairwise relations between their words. Without doubt, a measure of relatedness between text segments must take into account both the lexical and the semantic relatedness between words. Such a measure that captures well both aspects of text relatedness may help in many tasks, such as text retrieval, classification and clustering. In this paper we present a new approach for measuring the semantic relatedness between words based on their implicit semantic links. The approach exploits only a word thesaurus in order to devise implicit semantic links between words. Based on this approach, we introduce Omiotis, a new measure of semantic relatedness between texts which capitalizes on the word-to-word semantic relatedness measure (SR) and extends it to measure the relatedness between texts. We gradually validate our method: we first evaluate the performance of the semantic relatedness measure between individual words, covering word-to-word similarity and relatedness, synonym identification and word analogy; then, we proceed with evaluating the performance of our method in measuring text-to-text semantic relatedness in two tasks, namely sentence-to-sentence similarity and paraphrase recognition. Experimental evaluation shows that the proposed method outperforms every lexicon-based method of semantic relatedness in the selected tasks and the used data sets, and competes well against corpus-based and hybrid approaches.
Social networks have become very important for networking, communications, and content sharing. Social networking applications generate a huge amount of data on a daily basis and social networks constitute a growing field of research, because of the heterogeneity of data and structures formed in them, and their size and dynamics. When this wealth of data is leveraged by recommender systems, the resulting coupling can help address interesting problems related to social engagement, member recruitment, and friend recommendations. In this work we review the various facets of large-scale social recommender systems, summarizing the challenges and interesting problems and discussing some of the solutions.
Social network analysis has recently gained a lot of interest because of the advent and the increasing popularity of social media, such as blogs, social networking applications, micro-blogging, or customer review sites. In this environment, trust is becoming an essential quality among user interactions and the recommendation for useful content and trustful users is crucial for all the members of the network. In this work, we introduce a framework for handling trust in social networks, which is based on a reputation mechanism that captures the implicit and explicit connections between the network members, analyzes the semantics and dynamics of these connections and provides personalized user recommendations to the network members.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.