In a wireless sensor network (WSN), node localization is a key requirement for many applications. The concept of mobile anchor-based localization is not a new concept; however, the localization of mobile anchor nodes gains much attention with the advancement in the Internet of Things (IoT) and electronic industry. In this paper, we present a range-free localization algorithm for sensors in a three-dimensional (3D) wireless sensor networks based on flying anchors. The nature of the algorithm is also suitable for vehicle localization as we are using the setup much similar to vehicle-to-infrastructure- (V2I-) based positioning algorithm. A multilayer C-shaped trajectory is chosen for the random walk of mobile anchor nodes equipped with a Global Positioning System (GPS) and broadcasts its location information over the sensing space. The mobile anchor nodes keep transmitting the beacon along with their position information to unknown nodes and select three further anchor nodes to form a triangle. The distance is then computed by the link quality induction against each anchor node that uses the centroid-based formula to compute the localization error. The simulation shows that the average localization error of our proposed system is 1.4 m with a standard deviation of 1.21 m. The geometrical computation of localization eliminated the use of extra hardware that avoids any direct communication between the sensors and is applicable for all types of network topologies.
Wireless sensor network (WSN) is an emerging technology that can detect, collect, and transmit information in a specific unknown area in an unknown environment. It is currently playing an increasingly important role in the fields of national defense, medical and health, and daily life. WSN node location information is extremely important in many WSN applications. The data information collected by WSN is developed based on known node location information. The node location is one of the important issues in WSNs. Location information is very important for wireless sensors. A WSN without sensor node location information is meaningless because almost all WSN applications need to know node location information, such as animal populations, tracking research, early warning of building fires, management of goods in warehouses, and traffic monitoring systems. Several research works are underway to expand the 2D positioning algorithm in WSN to 3D regardless of the deployment structure of sensor nodes. This paper proposes an improved Savarese algorithm to the problem of singularity in WSN node localization. The proposed algorithm is a modified version of the conventional Savarese algorithm, and it solves the singularity problem and improved the positioning accuracy. Simulation results show that the proposed algorithm effectively improved system performance, and the accuracy is improved over 2.83% and 2.96% than the existing algorithms. The proposed scheme is effective for indoor environments while it can be deployed outdoor for small-scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.