Interval data, a special case of symbolic data, is becoming more and more frequent in different fields of applications including the field of Data Mining. Measuring the dissimilarity or similarity between two intervals is an important task in Data Mining. In this paper an analysis of ten desirable properties that should be fulfilled by the measures for interval data for making it suitable for applications like clustering and classification has been done. Also, it has been verified whether these properties are satisfied by three existing measures- L1-norm, L2-norm, L∞-norm and also a new dissimilarity measure for interval data has also been proposed. The performance of all the existing distance measures are compared with the proposed measure by applying well known K-Means algorithm on 6 interval datasets. It is seen that proposed measure gives better clustering accuracy then the existing measures on most of the datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.