Earlier work from this laboratory showed that abnormal fibroblast phenotypes isolated from fibrotic human lung produce factor(s) capable of inducing apoptosis and necrosis of alveolar epithelial cells in vitro [B. D. Uhal, I. Joshi, A. True, S. Mundle, A. Raza, A. Pardo, and M. Selman. Am. J. Physiol. 269 ( Lung Cell. Mol. Physiol. 13): L819–L828, 1995]. To determine whether epithelial cell death is associated with proximity to abnormal fibroblasts in vivo, the spatial distribution of epithelial cell loss, DNA fragmentation, and myofibroblasts was examined in the same tissue specimens used previously for fibroblast isolation. Paraffin sections of normal and fibrotic human lung were subjected to in situ end labeling (ISEL) of fragmented DNA and simultaneous immunolabeling of α-smooth muscle actin (α-SMA); replicate samples were subjected to electron microscopy and detection of collagens by the picrosirius red technique. Normal human lung exhibited very little labeling except for positive α-SMA immunoreactivity of smooth muscle surrounding bronchi and vessels. In contrast, fibrotic human lung exhibited moderate to heavy ISEL of interstitial, cuboidal epithelial, and free alveolar cells. ISEL of the alveolar epithelium was not distributed uniformly but was most intense immediately adjacent to underlying foci of α-SMA-positive fibroblast-like interstitial cells. Both electron microscopy and picrosirius red confirmed epithelial cell apoptosis, necrosis, and cell loss adjacent to foci of collagen accumulation surrounding fibroblast-like cells. These results demonstrate that the cuboidal epithelium of the fibrotic lung contains dying as well as proliferating cells and support the hypothesis that alveolar epithelial cell death is induced by abnormal lung fibroblasts in vivo as it is in vitro.
Earlier work from this laboratory found that fibroblasts isolated from fibrotic human lung [human interstitial pulmonary fibrosis (HIPF)] secrete a soluble inducer(s) of apoptosis in alveolar epithelial cells (AECs) in vitro [B. D. Uhal, I. Joshi, A. True, S. Mundle, A. Raza, A. Pardo, and M. Selman. Am. J. Physiol. 269 (Lung Cell. Mol. Physiol. 13): L819-L828, 1995]. The cultured human fibroblast strains most active in producing the apoptotic activity contained high numbers of stellate cells expressing alpha-smooth muscle actin, a myofibroblast marker. The apoptotic activity eluted from gel-filtration columns only in fractions corresponding to proteins. Western blotting of the protein fraction identified immunoreactive angiotensinogen (ANGEN), and two-step RT-PCR revealed expression of ANGEN by HIPF fibroblasts but not by normal human lung fibroblasts. Specific ELISA detected angiotensin II (ANG II) at concentrations sixfold higher in HIPF-conditioned medium than in normal fibroblast-conditioned medium. Pretreatment of the concentrated medium with purified renin plus purified angiotensin-converting enzyme (ACE) further increased the ELISA-detectable ANG II eightfold. Apoptosis of AECs in response to HIPF-conditioned medium was completely abrogated by the ANG II receptor antagonist saralasin (50 microg/ml) or anti-ANG II antibodies. These results identify the protein inducers of AEC apoptosis produced by HIPF fibroblasts as ANGEN and its derivative ANG II. They also suggest a mechanism for AEC death adjacent to HIPF myofibroblasts [B. D. Uhal, I. Joshi, C. Ramos, A. Pardo, and M. Selman. Am. J. Physiol. 275 (Lung Cell. Mol. Physiol. 19): L1192-L1199, 1998].
Primary lung fibroblasts were isolated from patients with idiopathic pulmonary fibrosis (HIPF), from normal human lung tissue (NH), from rats treated with 75% oxygen and paraquat (PA), and from normal adult rats (NR). Serum-free media conditioned by each fibroblast strain were tested on the human A549 cell line (HIPF and NH media) or on primary alveolar epithelial cells (AEC) isolated from normal adult rats (PA or NR media). Over 20-h incubation, HIPF- or PA-conditioned media induced DNA fragmentation and significant decreases in total recoverable DNA and cell number of A549 or AEC, respectively; NH or NR media had no significant effect relative to serum-free unconditioned media. Apoptosis of A549 and AEC was detected by altered nuclear morphology and was confirmed by terminal deoxynucleotidyl transferase-mediated bio-dUTP nick end labeling. The endonuclease inhibitors 10 microM aurintricarboxylic acid and 50 microM zinc inhibited HIPF-induced apoptosis of A549 cells by 68 and 71%, respectively. Both apoptosis and necrosis were induced by HIPF and PA media in a concentration-dependent manner. These results suggest that altered fibroblasts emerging during fibrotic lung injury release a soluble factor(s) capable of inducing cell death and net loss of AEC.
Hyperoxia causes a reproducible pattern of lung injury and repair in rodents, in which proliferation of alveolar epithelial cells (AEC) and fibroblasts is observed during recovery. We postulated that if quiescent cells are stimulated to reenter the cell cycle, then cyclin expression and cyclin-dependent protein kinase activity would be reactivated in AEC during the repair process after hyperoxic lung injury. To test this hypothesis, we exposed adult rats to short-term hyperoxia, followed by recovery for various times in room air. Cellular proliferation in vivo was confirmed by 1) flow cytometric analysis of DNA content (FACS) of freshly isolated AEC and 2) immunohistochemistry of proliferating cell nuclear antigen (PCNA) and bromodeoxyuridine (BrdU) incorporation into DNA on lung sections. The percentage of freshly isolated AEC in S phase and G2/M phase on FACS analysis increased twofold to a maximum of 16.5%, after 48 h in 100% oxygen and 48 h recovery in air. Cyclins A and D and p34cdc2 protein expression were also increased during the recovery period; while p33cdk2 and p34cdk4 increased only slightly. p34cdc2 histone H1 kinase activity, both in whole lung and in AEC, decreased initially after 48 h in oxygen. However, a marked increase in p34cdc2 kinase activity was observed at 48 h recovery in whole lung and returned to baseline by 72 h. In isolated and cultured AEC, p34cdc2 kinase activity was maximal at 24 h of recovery in air. We conclude that cyclins A and D and p34cdc2 protein expression and p34cdc2 kinase activity are increased in vivo during recovery from hyperoxic lung injury in both adult rat lungs and in AEC isolated from these lungs. We speculate that the induction of cyclin-dependent protein kinase activity is a key event in mediating the proliferative cellular repair response to lung injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.