Indazoles are heterocyclic moieties rarely found in nature. They are nitrogen containing chemical compounds composed of a pyrazole ring condensed with a benzene ring. Various indazole derivatives have been described with a wide variety of biological activities. This has aroused great interest in the development of novel indazole based therapeutic agents. Areas covered: Forty-two patents published within the last 5 years (2013-2017) describing derivatives with the indazole scaffold and their therapeutic applications were analysed. Expert opinion: The indazole scaffold is of great pharmacological importance as it forms the basic structure of a large number of compounds with potential therapeutic value. Derivatives have been found to possess promising anticancer and anti-inflammatory activity and have also found application in disorders involving protein kinases (aside from cancer) and neurodegeneration. The compounds where mechanism of action is defined can afford new molecules with biological and therapeutic properties.
A series of indole derivatives was designed and synthesised to improve on activity and circumvent pharmacokinetic limitations experienced with the structurally related compound, ladostigil. The compounds consisted of a propargylamine moiety (a known MAO inhibitor and neuroprotector) at the 1 position and a ChE inhibiting diethyl-carbamate/urea moiety at the 5 or 6 position of the indole ring. In order to prevent or slow down the hydrolysis and deactivation associated with the carbamate function of ladostigil, a urea moeity was incorporated into selected compounds to obtain more metabolically stable structures. The majority of the synthesised compounds showed improved MAO-A inhibitory activity compared to ladostigil. The compounds possessing the propargylamine moiety showed good MAO-B inhibitory activity with and portraying IC values between 14-20 fold better than ladostigil. The ChE assay results indicated that the compounds have non-selective inhibitory activities on eeAChE and eqBuChE regardless of the type or position of substitution (IC: 2-5 μM). MAO-A and MAO-B docking results showed that the propargylamine moiety was positioned in close proximity to the FAD cofactor suggesting that the good inhibitory activity may be attributed to the propargylamine moiety and irreversible inhibition as confirmed in the reversibility studies. Docking results also indicated that the compounds have interactions with important amino acids in the AChE and BuChE catalytic sites. Compound was the most potent multifunctional agent showing better inhibitory activity than ladostigil on all enzymes tested (hMAO-A IC = 4.31 μM, hMAO-B IC = 2.62 μM, eeAChE IC = 3.70 μM, eqBuChE IC = 2.82 μM). Chemical stability tests confirmed the diethyl-urea containing compound to be more stable than its diethyl-carbamate containing counterpart compound. Compound also exerted significant neuroprotection (52.62% at 1 μM) against MPP insult to SH-SY5Y neural cells and has good predicted ADMET properties. The favourable neuronal enzyme inhibitory activity, likely improved pharmacokinetic properties and the potent neuroprotective ability of compound make it a promising compound for further development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.