Neuropilin 1 (Nrp1) is a coreceptor for vascular endothelial growth factor A165 (VEGF-A165, VEGF-A164 in mice) and semaphorin 3A (SEMA3A). Nevertheless, Nrp1 null embryos display vascular defects that differ from those of mice lacking either VEGF-A164 or Sema3A proteins. Furthermore, it has been recently reported that Nrp1 is required for endothelial cell (EC) response to both VEGF-A165 and VEGF-A121 isoforms, the latter being incapable of binding Nrp1 on the EC surface. Taken together, these data suggest that the vascular phenotype caused by the loss of Nrp1 could be due to a VEGF-A164/SEMA3A-independent function of Nrp1 in ECs, such as adhesion to the extracellular matrix. By using RNA interference and rescue with wild-type and mutant constructs, we show here that Nrp1 through its cytoplasmic SEA motif and independently of VEGF-A165 and SEMA3A specifically promotes α5β1-integrin-mediated EC adhesion to fibronectin that is crucial for vascular development. We provide evidence that Nrp1, while not directly mediating cell spreading on fibronectin, interacts with α5β1 at adhesion sites. Binding of the homomultimeric endocytic adaptor GAIP interacting protein C terminus, member 1 (GIPC1), to the SEA motif of Nrp1 selectively stimulates the internalization of active α5β1 in Rab5-positive early endosomes. Accordingly, GIPC1, which also interacts with α5β1, and the associated motor myosin VI (Myo6) support active α5β1 endocytosis and EC adhesion to fibronectin. In conclusion, we propose that Nrp1, in addition to and independently of its role as coreceptor for VEGF-A165 and SEMA3A, stimulates through its cytoplasmic domain the spreading of ECs on fibronectin by increasing the Rab5/GIPC1/Myo6-dependent internalization of active α5β1. Nrp1 modulation of α5β1 integrin function can play a causal role in the generation of angiogenesis defects observed in Nrp1 null mice.
Fascin is an actin-bundling protein involved in filopodia assembly and cancer invasion and metastasis of multiple epithelial cancer types. Fascin forms stable actin bundles with slow dissociation kinetics in vitro and is regulated by phosphorylation of serine 39 by protein kinase C (PKC). Cancer cells use invasive finger-like protrusions termed invadopodia to invade into and degrade extracellular matrix. Invadopodia have highly dynamic actin that is assembled by both Arp2/3 complex and formins; they also contain components of membrane trafficking machinery such as dynamin and cortactin and have been compared with focal adhesions and podosomes. We show that fascin is an integral component of invadopodia and that it is important for the stability of actin in invadopodia. The phosphorylation state of fascin at S39, a PKC site, contributes to its regulation at invadopodia. We further implicate fascin in invasive migration into collagen I-Matrigel gels and particularly in cell types that use an elongated mesenchymal type of motility in 3D. We provide a potential molecular mechanism for how fascin increases the invasiveness of cancer cells, and we compare invadopodia with invasive filopod-like structures in 3D.
Leading cells require LIMK for matrix degradation and invadopodia formation during collective cell migration.
As well as providing a structural framework, the actin cytoskeleton plays integral roles in cell death, survival, and proliferation. The disruption of the actin cytoskeleton results in the activation of the c-Jun N-terminal kinase (JNK) stress-activated protein kinase (SAPK) pathway; however, the sensor of actin integrity that couples to the JNK pathway has not been characterized in mammalian cells. We now report that the mammalian Ste20-like (MST) kinases mediate the activation of the JNK pathway in response to the disruption of the actin cytoskeleton. One consequence of actin disruption is the JNK-mediated stabilization of p21 Waf1/Cip1 (p21) via the phosphorylation of Thr57. The expression of MST1 or MST2 was sufficient to stabilize p21 in a JNK-and Thr57-dependent manner, while the stabilization of p21 by actin disruption required MST activity. These data indicate that, in addition to being components of the Salvador-Warts-Hippo tumor suppressor network and binding partners of c-Raf and the RASSF1A tumor suppressor, MST kinases serve to monitor cytoskeletal integrity and couple via the JNK SAPK pathway to the regulation of a key cell cycle regulatory protein.The actin cytoskeleton is a dynamic structure that determines cell morphology and motility. In addition, the cytoskeleton also influences other biological functions, such as proliferation, survival, and death, although the mechanistic details linking the cytoskeleton to these processes have not been fully elucidated. Considerable effort has focused on characterizing the signal transduction pathways that control cytoskeletal organization (33). The actin cytoskeleton itself also may regulate cell signaling; for example, mechanical stretching, shear stress, and cytoskeletal disruption each have been shown to activate stress-activated protein kinase (SAPK) pathways (34). Although in Saccharomyces cerevisiae an actin integrity-responsive pathway has been identified in which actin cytoskeleton disassembly results in the activation of the Ssk2p kinase that lies upstream of the Hog1 SAPK pathway (7, 56), an analogous pathway in mammalian cells has not been delineated.SAPK pathways are specific examples of mitogen-activated protein kinase (MAPK) cascades (43). At the bottom of archetypal MAPK pathways are signal-propagating kinases such as ERK1 and ERK2; in the case of SAPK signaling, the similarly positioned kinases are JNK and p38 family members.MAPK are phosphorylated and regulated by MAPK kinases (MAP2K); for c-Jun N-terminal kinase (JNK), the MAP2K are MKK4 and MKK7, while for p38 they are MKK3 and MKK6. Moving stepwise further upstream are MAP3K and MAP4K, although in some pathways there may be no need for a MAP4K, the Ras activation of the MAP3K Raf in the ERK MAPK pathway being one example.Although much recent interest has focused on their antiproliferative and proapoptotic functions as a component of the Salvador-Warts-Hippo tumor suppressor network (31) and as binding partners of the c-Raf MAP3K (42) and RASSF1A tumor suppressor (39), the mammalian Ste2...
FERM domain proteins, including talins, ERMs, FAK and certain myosins, regulate connections between the plasma membrane, cytoskeleton and extracellular matrix. Here we show that FrmA, a Dictyostelium discoideum protein containing two talin-like FERM domains, plays a major role in normal cell shape, cell-substrate adhesion and actin cytoskeleton organisation. Using total internal reflection fluorescence (TIRF) microscopy we show that FrmA-null cells are more adherent to substrate than wild-type cells because of an increased number, persistence and mislocalisation of paxillin-rich cell-substrate adhesions, which is associated with decreased motility. We show for the first time that talinA colocalises with paxillin at the distal ends of filopodia to form cell-substrate adhesions and indeed arrives prior to paxillin. After a period of colocalisation, talin leaves the adhesion site followed by paxillin. Whereas talinA-rich spots turnover prior to the arrival of the main body of the cell, paxillin-rich spots turn over as the main body of the cell passes over it. In FrmA-null cells talinA initially localises to cell-substrate adhesion sites at the distal ends of filopodia but paxillin is instead localised to stabilised adhesion sites at the periphery of the main cell body. This suggests a model for cell-substrate adhesion in Dictyostelium whereby the talin-like FERM domains of FrmA regulate the temporal and spatial control of talinA and paxillin at cell-substrate adhesion sites, which in turn controls adhesion and motility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.