Synthesis of a series of novel cyano- and amidinobenzothiazole derivatives 3-31 is described. All studied amidino derivatives showed noticeable antiproliferative effect on several tumor cell lines. Cyano derivatives 11-17 showed considerably less pronounced activity because of their poor solubility in aqueous cell culture medium, which was confirmed by the principal components (PC) analysis. Compounds 21, 22, 28, and 29 were tested for their effects on the cell cycle and apoptosis, whereby 22 and 29, having methyl group at the C-6 position in pyridine ring, showed drastic cell cycle perturbations that were both concentration- and time-dependent and induced apoptosis. The QSAR modeling, based on the physicochemical descriptors and on the measured biological activities, indicated the relevance of molecular polarizability and particular distribution of pharmacophores on the molecular surface for activity. In conclusion, benzothiazoles containing either isopropylamidino or imidazolyl groups will be considered as starting compounds for further investigation on lead identification.
Macrolides with 14- and 15-membered ring are characterized by high and extensive tissue distribution, as well as good cellular accumulation and retention. Since macrolide structures do not fit the Lipinski rule of five, macrolide pharmacokinetic properties cannot be successfully predicted by common models based on data for small molecules. Here we describe the development of the first models for macrolide cellular pharmacokinetics. By comparison of cellular accumulation and retention in six human primary cell cultures of leukocytic and lung origin, as well as in lung carcinoma cell line NCI-H292, this cell line was found to be an adequate representative cell type for modeling macrolide cellular pharmacokinetics. Accumulation and retention in the NCI-H292 cells, as well as various physicochemical properties, were determined for a set of 48 rationally designed basic macrolide compounds. Classification models for predicting macrolide cellular accumulation and retention were developed using relatively easily determined and conceptually simple descriptors: experimentally determined physicochemical parameters ChromlogD and CHI IAM, as well as a calculated number of positively charged atoms (POS). The models were further tested and improved by addition of 37 structurally diverse macrolide molecules.
Monomer-dimer equilibrium of nitroso compounds was investigated in the solid state under cryogenic photochemical conditions. It was found that nitroso dimers can be UV-photolytically converted to nitroso monomers at 12 K, and reverted to dimers by visible light irradiation or warming above 170 K. Such a photothermal "chemical switch", by which it is possible to break the chemical bond between two nitrogen atoms and bind them again, could eventually be used in supramolecular self-assembly systems. The reaction is very efficient and controlled by topochemical factors. This phenomenon was studied spectroscopically in a series of cyclic and polycyclic nitroso compounds.
Novel cyano- and 2-imidazolinyl-substituted derivatives of pyridylbenzo[b]thiophene-2-carboxamides 4, 5, 10-13 and benzo[b]thieno[2,3-c]naphthyridin-2-ones 6, 7, 14-17 were prepared. All derivatives showed a prominent antiproliferative effect. Extensive DNA binding studies and additional biological evaluations point to various modes/targets of action. The results strongly support intercalation into DNA as a dominant binding mode of fused analogues, which was substantiated using topoisomerase I inhibition assay. Most intriguingly, only minor structural difference between "nonfused" compounds 12 and 13 has strong impact on the interactions with DNA; while 13 binds within the DNA minor groove in the form of dimer, 12 does not form significant interactions with DNA. The assumption that severe mitotic impairment (G2/M phase arrest) induced by 12 could point to tubulin, another important target, was confirmed by its obvious anti-tubulin activity observed in immunofluorescence assay, whereby treated cells showed disruption of microtubule formation comparable to the effect obtained by paclitaxel, a well-known tubulin antagonist chemotherapeutic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.