The proposed LC/MS method results in a better separation and specificity for the targeted analytes. Several nitro-aromatic compounds were detected in urban BBA. The LC/MS peak intensity of the newly detected methyl nitrocatechols and nitroguaiacols is comparable to that of the methyl nitrocatechols, which also qualifies them as suitable molecular tracers for secondary biomass burning aerosol.
Yellow-colored methylnitrocatechols (MNC) contribute to the total organic aerosol mass and significantly alter absorption properties of the atmosphere. To date, their formation mechanisms are still not understood. In this work, the intriguing role of HNO (catalytic and oxidative) in the dark transformation of 3-methylcatechol (3MC) under atmospherically relevant aqueous-phase conditions is emphasized. Three possible pathways of dark 3-methyl-5-nitrocatechol and 3-methyl-4-nitrocatechol formation, markedly dependent on reaction conditions, were considered. In the dominant pathway, HNO is directly involved in the transformation of 3MC via consecutive oxidation and conjugated addition reactions (nonradical reaction mechanism). The two-step nitration dominates at a pH around the p K of HNO, which is typical for atmospheric aerosols, and is moderately dependent on temperature. Under very acidic conditions, the other two nitration pathways, oxidative aromatic nitration (electrophilic) and recombination of radical species, gain in importance. The predicted atmospheric lifetime of 3MC according to the dominant mechanism at these conditions (2.4 days at pH 4.5 and 25 °C) is more than 3-times shorter than that via the other two competitive pathways. Our results highlight the significance of a catechol oxidation-conjugated addition reaction in a nighttime secondary nitroaromatic chromophore formation in the atmosphere, especially in polluted environments with high NO concentrations and relatively acidic particles (pH around 3).
The tropospheric aqueous-phase aging of guaiacol (2-methoxyphenol, GUA), a lignocellulosic biomass burning pollutant, is addressed in this work. Pathways of GUA nitration in aqueous solution under atmospherically relevant conditions are proposed and critically discussed. The influence of NaNO2 and H2O2, hydroxyl radical scavenger, and sunlight was assessed by an experimental-modeling approach. In the presence of the urban pollutant, nitrite, GUA is preferentially nitrated to yield 4- and 6-nitroguaiacol. After a short lag-time, 4,6-dinitroguaiacol is also formed. Its production accelerates after guaiacol is completely consumed, which is nicely described by the model function accounting for NO2(•) and NO2(+) as nitrating agents. Although the estimated second-order kinetic rate constants of methoxyphenol nitration with NO2(•) are substantially higher than the corresponding rate constants of nitration with NO2(+), nitration rates are competitive under nighttime and liquid atmospheric aerosol-like conditions. In contrast to concentrations of radicals, which are governed by the interplay between diffusion-controlled reactions and are therefore mostly constant, concentrations of electrophiles are very much dependent on the ratio of NO2(-) to activated aromatics in solution. These results contribute substantially to the understanding of methoxyphenol aging in the atmospheric waters and underscore the importance of including electrophilic aromatic substitution reactions in atmospheric models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.