The article describes the implementation of IoT technology in the teaching of microprocessor technology. The method presented in the article combines the reality and virtualization of the microprocessor technology laboratory. A created IoT monitoring device monitors the students’ microcontroller pins and sends the data to the server to which the teacher is connected via the control application. The teacher has the opportunity to monitor the development of tasks and student code of the program, where the functionality of these tasks can be verified. Thanks to the IoT remote laboratory implementation, students’ tasks during the lesson were improved. As many as 53% (n = 8) of those students who could improve their results achieved an improvement of one or up to two tasks during class. Before the IoT remote laboratory application, up to 30% (n = 6) of students could not solve any task and only 25% (n = 5) solved two tasks (full number of tasks) during the class. Before implementation, 45% (n = 9) solved one problem. After applying the IoT remote laboratory, these numbers increased significantly and up to 50% (n = 10) of students solved the full number of tasks. In contrast, only 10% (n = 2) of students did not solve any task.
The paper presents analyses of the implementation of IoT in the patent technology of the remote measuring laboratory (VMLab). The technology allows to create a new electrical connection between different devices, where the connection diagram was not defined before. This may be done remotely around the world. To begin with, an application of this technology as a remote measuring laboratory is presented and described. Analyses of the possible application of IoT technology in the Remote Measurement Laboratory (VMLAB) with a final design are also presented. The research focuses on an efficient way to retrieve measured values synchronized over the Internet from multiple measuring devices and controllable devices, without an Ethernet or Wi-Fi interface from the manufacturer. The analyses may also be useful when implementing an additional IoT approach to existing systems.
The article describes the principles based on which it is possible to obtain energy from renewable sources more efficiently. The principles use the conventional DC-DC interleaved buck converter based on the common electronic component types and the control strategy. A novelty of such a proposed solution lies in the methods which are not new, but with the right combination, better results can be achieved. The resulting method can be implemented into various topologies where the highest efficiency for wide input power is required. In case of the renewable energy sources where the power can vary hugely during the day, the proposed method can be implemented. Therefore, the article provides several steps, from calculation through simulation to experimental results that brings reader close to understanding of a such proposed solution.
The letter deals with the methodology for determining the optimal number of phases of a multi-phase DC to DC buck converter from the point of view of its maximum efficiency. It also analyses the impact of individual parameters of the converter and the used components on the number of these phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.