Fibroblast activation protein ␣ (FAP␣) is highly expressed in epithelial cancers and has been implicated in extracellular matrix remodeling, tumor growth, and metastasis. We present the first high resolution structure for the apoenzyme as well as kinetic data toward small dipeptide substrates.
Stearoyl-coenzyme A desaturase-1 (SCD1) has an important role in lipid metabolism, and SCD1 inhibitors are potential therapeutic agents for the treatment of metabolic diseases and cancers. Here we report the 3.25-Å crystal structure of human SCD1 in complex with its substrate, stearoyl-coenzyme A, which defines the new SCD1 dimetal catalytic center and reveals the determinants of substrate binding to provide insights into the catalytic mechanism of desaturation of the stearoyl moiety. The structure also provides a mechanism for localization of SCD1 in the endoplasmic reticulum: human SCD1 folds around a tight hydrophobic core formed from four long α-helices that presumably function as an anchor spanning the endoplasmic reticulum membrane. Furthermore, our results provide a framework for the rational design of pharmacological inhibitors targeting the SCD1 enzyme.
General
control nonderepressible 2 (GCN2) is a master regulator
kinase of amino acid homeostasis and important for cancer survival
in the tumor microenvironment under amino acid depletion. We initiated
studies aiming at the discovery of novel GCN2 inhibitors as first-in-class
antitumor agents and conducted modification of the substructure of
sulfonamide derivatives with expected type I half binding on GCN2.
Our synthetic strategy mainly corresponding to the αC-helix
allosteric pocket of GCN2 led to significant enhancement in potency
and a good pharmacokinetic profile in mice. In addition, compound 6d, which showed slow dissociation in binding on GCN2, demonstrated
antiproliferative activity in combination with the asparagine-depleting
agent asparaginase in an acute lymphoblastic leukemia (ALL) cell line,
and it also displayed suppression of GCN2 pathway activation with
asparaginase treatment in the ALL cell line and mouse xenograft model.
A novel series of non-amidine-based C1s inhibitors have been explored. Starting from high-throughput screening hit 3, isoquinoline was replaced with 1-aminophthalazine to enhance C1s inhibitory activity while exhibiting good selectivity against other serine proteases. We first disclose a crystal structure of a complex of C1s and a small-molecule inhibitor (4e), which guided structure-based optimization around the S2 and S3 sites to further enhance C1s inhibitory activity by over 300-fold. Improvement of membrane permeability by incorporation of fluorine at the 8-position of 1-aminophthalazine led to identification of (R)-8 as a potent, selective, orally available, and brain-penetrable C1s inhibitor. (R)-8 significantly inhibited membrane attack complex formation induced by human serum in a dose-dependent manner in an in vitro assay system, proving that selective C1s inhibition blocked the classical complement pathway effectively. As a result, (R)-8 emerged as a valuable tool compound for both in vitro and in vivo assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.