Specific microRNA (miRNA) signatures have been associated with different cytogenetic subtypes in acute leukemias. This finding prompted us to investigate potential associations between genetic abnormalities in multiple myeloma (MM) and singular miRNA expression profiles. Moreover, global gene expression profiling was also analyzed to find correlated miRNA gene expression and select miRNA target genes that show such correlation. For this purpose, we analyzed the expression level of 365 miRNAs and the gene expression profiling in 60 newly diagnosed MM patients, selected to represent the most relevant recurrent genetic abnormalities. Supervised analysis showed significantly deregulated miRNAs in the different cytogenetic subtypes as compared with normal PC. It is interesting to note that miR-1 and miR-133a clustered on the same chromosomal loci, were specifically overexpressed in the cases with t(14;16). The analysis of the relationship between miRNA expression and their respective target genes showed a conserved inverse correlation between several miRNAs deregulated in MM cells and CCND2 expression level. These results illustrate, for the first time, that miRNA expression pattern in MM is associated with genetic abnormalities, and that the correlation of the expression profile of miRNA and their putative mRNA targets is useful to find statistically significant protein-coding genes in MM pathogenesis associated with changes in specific miRNAs.
Exosomes/microvesicles (MVs) provide a mechanism of intercellular communication. Our hypothesis was that mesenchymal stromal cells (MSC) from myelodysplastic syndrome (MDS) patients could modify CD34+ cells properties by MVs. They were isolated from MSC from MDS patients and healthy donors (HD). MVs from 30 low-risk MDS patients and 27 HD were purified by ExoQuick-TC™ or ultracentrifugation and identified by transmission electron microscopy, flow cytometry (FC) and western blot for CD63. Incorporation of MVs into CD34+ cells was analyzed by FC, and confocal and fluorescence microscopy. Changes in hematopoietic progenitor cell (HPC) properties were assessed from modifications in microRNAs and gene expression in CD34+ cells as well as viability and clonogenic assays of CD34+ cells after MVs incorporation. Some microRNAs were overexpressed in MVs from patients MSC and two of them, miR-10a and miR-15a, were confirmed by RT-PCR. These microRNAs were transferred to CD34+ cells, modifying the expression of MDM2 and P53 genes, which was evaluated by RT-PCR and western blot. Finally, examining CD34+ cells properties after incorporation, higher cell viability (p = 0.025) and clonogenic capacity (p = 0.037) were observed when MVs from MDS patients were incorporated. In summary, we show that BM-MSC release MVs with a different cargo in MDS patients compared with HD. These structures are incorporated into HPC and modify their properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.