The mechanical loading of striated muscle is thought to play an important role in shaping bones and joints. Here, we examine skeletogenesis in late embryogenesis (embryonic day 18.5) in Myf5-/-:MyoD-/- fetuses completely lacking striated muscle. The phenotype includes enlarged and fused cervical vertebrae and postural anomalies, some viscerocranial anomalies, long bone truncation and fusion, absent deltoid tuberosity of the humerus, scapular and clavicular hypoplasia, cleft palate, and cleft sternum. In contrast, neurocranial bone development was essentially normal. While the magnitude of individual effects varied throughout the skeletal system, the results are consistent with skeletal development depending on functional muscles. Novel abnormalities in the amyogenic fetuses relative to less severely paralyzed phenotypes extend our understanding of skeletogenic dependence on embryonic muscle contraction and static loading.
SUMMARY Xenopus laevis tadpoles that arrest development and remain as larvae for several years sometimes occur spontaneously in laboratory populations. These tadpoles cease development at an early hindlimb stage, but continue to grow and develop into grossly deformed giants. Giant tadpoles lack thyroid glands, and differ in morphology and behaviour from normal larvae. They are negatively buoyant, typically with small and partially solidified lungs, and have greatly enlarged fat bodies. Giant tadpoles have mature gonads with eggs and sperm, whereas normal tadpoles of the same stage have undifferentiated gonads. Larval reproduction has never been reported in anurans, but gonadal development decoupled from metamorphosis brings these giants the closest of any anurans to being truly neotenic. We discuss behavioural and morphological factors that may hinder both reproduction in giant Xenopus larvae and the evolution of neoteny in anurans in general. Experimental treatment with exogenous thyroid hormone induces some,but not complete, metamorphic changes in these giants. The limbs and head progress through metamorphosis; however, all tadpoles die at the stage when the tail would normally be resorbed. The disproportionate growth of tissues and organs in giant tadpoles may preclude complete metamorphosis, even under exogenous thyroid hormone induction.
Summary1. Sensory modalities that allow tadpoles to assess their environment, and subsequently mediate their development, are not well understood. 2. By putting clay model tadpoles into the tanks with live tadpoles we have enhanced tactile and visual stimuli for tadpoles of three species ( Rana sylvatica , Bufo americanus and Xenopus laevis ) in a controlled fashion. The goal was to determine whether visual and tactile cues in the absence of chemical signals influenced tadpole growth and development. 3. The response to enhanced visual and tactile stimuli was strong in Rana , intermediate in Xenopus , but absent in Bufo tadpoles. Rana tadpoles that experienced both stimuli enhanced developed the fastest and metamorphosed at the smallest body size. Development was slower in the treatments with only one stimulus enhanced, and slowest in the controls. 4. Our results suggest that tadpoles use both vision and mechanoreception for environment assessment, and that they are able to modify their growth and developmental rates in response to sensory enrichment. 5. Tadpoles exposed to the combination of visual and tactile stimulation showed the highest whole-body content of the stress hormone corticosterone, suggesting that the enhanced stimuli were experienced as stressful. Corticosterone is known to synergize with thyroid hormone to promote metamorphosis.
Tadpoles that spontaneously arrest development and remain as larvae occur occasionally in Xenopus laevis populations. These non-metamorphosing tadpoles continue to grow, and they develop into grossly deformed giant individuals which come as close as any anurans to being truly neotenic. Giant X. laevis tadpoles that fail to metamorphose lack thyroid glands. In this study, the hypothesis that the tissues of these tadpoles nevertheless remain thyroid hormone sensitive was tested, by exposing isolated tadpole tail tips to exogenous thyroid hormone in tissue culture. The tail tips from giant tadpoles significantly shrank in response to the thyroid hormone treatment, showing that their tissue was still capable of metamorphosis. However, the amount of shrinkage was less than that observed in tail tissue from normal tadpoles. It was hypothesized that complete induction of metamorphosis may not be possible in the giant tadpoles due to a disproportionate growth and development of tissues and organs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.