Abstract:The fuzzy oil drop model, a tool which can be used to study the structure of the hydrophobic core in proteins, has been applied in the analysis of proteins belonging to the jumonji group-JARID2, JARID1A, JARID1B and JARID1D-proteins that share the property of being able to interact with DNA. Their ARID and PHD domains, when analyzed in the context of the fuzzy oil drop model, are found to exhibit structural variability regarding the status of their secondary folds, including the β-hairpin which determines their biological function. Additionally, the structure of disordered fragments which are present in jumonji proteins (as confirmed by the DisProt database) is explained on the grounds of the hydrophobic core model, suggesting that such fragments contribute to tertiary structural stabilization. This conclusion is supported by divergence entropy measurements, expressing the degree of ordering in each protein's hydrophobic core.
Abstract:The aqueous environment is a pervasive factor which, in many ways, determines the protein folding process and consequently the activity of proteins. Proteins are unable to perform their function unless immersed in water (membrane proteins excluded from this statement). Tertiary conformational stabilization is dependent on the presence of internal force fields (nonbonding interactions between atoms), as well as an external force field generated by water. The hitherto the unknown structuralization of water as the aqueous environment may be elucidated by analyzing its effects on protein structure and function. Our study is based on the fuzzy oil drop model-a mechanism which describes the formation of a hydrophobic core and attempts to explain the emergence of amyloid-like fibrils. A set of proteins which vary with respect to their fuzzy oil drop status (including titin, transthyretin and a prion protein) have been selected for in-depth analysis to suggest the plausible mechanism of amyloidogenesis.
phi-psi maps of N-acetyl alanine N'-methyl amide have been computed using the CHARMM potential, the all-atom AMBER potential, and the ECEPP/2 potential, before and after adiabatic relaxation. Maps using the CHARMM and AMBER potentials were determined with values of 1.0 and 4.0 for the dielectric constant epsilon, and with a distance dependent dielectric constant. Adiabatic relaxation was carried out using flexible geometry for the CHARMM and AMBER potentials, and using rigid geometry for the AMBER and ECEPP potentials. In all cases, the lowest energy was found in the C7eq region (phi approximately -70 degrees, psi approximately 70 degrees). The maps with CHARMM and AMBER with epsilon = 4.0 and with ECEPP, without adiabatic relaxation, were broadly similar but differed in the relative energies allotted to high-energy regions of the map. After adiabatic relaxation with rigid geometry, the map with ECEPP, and the map with AMBER using a distance-dependent dielectric constant, agreed fairly well apart from differences in the relative energies of the alpha R, alpha L, and C7ax regions. After adiabatic relaxation with flexible geometry, the maps with CHARMM and AMBER became very similar; the lowest energies were observed in the C7eq region, the C5 region (phi approximately -150 degrees, psi approximately 150 degrees) and the C7ax region (phi approximately 70 degrees, psi approximately -70 degrees). Breakdown of the energies, after adiabatic relaxation, into electrostatic, nonbonded, and geometric (including torsional) contributions, showed that (1) with fixed geometry, the nonbonded and torsional contribution to the ECEPP and AMBER potentials were very similar, but the electrostatic contributions were markedly different; (2) with flexible geometry, the nonbonded contribution to the CHARMM and AMBER potentials did not vary greatly over the whole map. The phi-psi maps were subjected to three simple comparisons with experiment. (1) The maps were used to predict the characteristic ratio for poly-L-alanine, and the results were compared with experimental findings (D.A. Brant and P.J. Flory, J. Amer. Chem. Soc. 87, 2788-2791, 1965). The agreement with experiment was acceptable for ECEPP, and for CHARMM after adiabatic relaxation, marginal for AMBER after adiabatic relaxation, and unsatisfactory for CHARMM or AMBER without adiabatic relaxation. (2) Deviations of bond angles from their equilibrium values, in energy-minimized conformations, were compared with values deduced from crystals of terminally-blocked amino acids. With both the CHARMM and AMBER potentials using flexible geometry, one or more excessive deviations was observed in the C7ax local minimum.(ABSTRACT TRUNCATED AT 400 WORDS)
Abstract:We propose a mathematical model describing the formation of micellar forms-whether spherical, globular, cylindrical, or ribbonlike-as well as its adaptation to protein structure. Our model, based on the fuzzy oil drop paradigm, assumes that in a spherical micelle the distribution of hydrophobicity produced by the alignment of polar molecules with the external water environment can be modeled by a 3D Gaussian function. Perturbing this function by changing the values of its sigma parameters leads to a variety of conformations-the model is therefore applicable to globular, cylindrical, and ribbonlike micelles. In the context of protein structures ranging from globular to ribbonlike, our model can explain the emergence of fibrillar forms; particularly amyloids.
The presented analysis concerns the inter-domain and inter-protein interface in protein complexes. We propose extending the traditional understanding of the protein domain as a function of local compactness with an additional criterion which refers to the presence of a well-defined hydrophobic core. Interface areas in selected homodimers vary with respect to their contribution to share as well as individual (domain-specific) hydrophobic cores. The basic definition of a protein domain, i.e., a structural unit characterized by tighter packing than its immediate environment, is extended in order to acknowledge the role of a structured hydrophobic core, which includes the interface area. The hydrophobic properties of interfaces vary depending on the status of interacting domains—In this context we can distinguish: (1) Shared hydrophobic cores (spanning the whole dimer); (2) Individual hydrophobic cores present in each monomer irrespective of whether the dimer contains a shared core. Analysis of interfaces in dystrophin and utrophin indicates the presence of an additional quasi-domain with a prominent hydrophobic core, consisting of fragments contributed by both monomers. In addition, we have also attempted to determine the relationship between the type of interface (as categorized above) and the biological function of each complex. This analysis is entirely based on the fuzzy oil drop model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.