Genomic data now allow the large-scale manual or semi-automated reconstruction of metabolic networks. A network reconstruction represents a highly curated organism-specific knowledge base. A few genome-scale network reconstructions have appeared for metabolism in the baker’s yeast Saccharomyces cerevisiae. These alternative network reconstructions differ in scope and content, and further have used different terminologies to describe the same chemical entities, thus making comparisons between them difficult. The formulation of a ‘community consensus’ network that collects and formalizes the ‘community knowledge’ of yeast metabolism is thus highly desirable. We describe how we have produced a consensus metabolic network reconstruction for S. cerevisiae. Special emphasis is laid on referencing molecules to persistent databases or using database-independent forms such as SMILES or InChI strings, since this permits their chemical structure to be represented unambiguously and in a manner that permits automated reasoning. The reconstruction is readily available via a publicly accessible database and in the Systems Biology Markup Language, and we describe the manner in which it can be maintained as a community resource. It should serve as a common denominator for system biology studies of yeast. Similar strategies will be of benefit to communities studying genome-scale metabolic networks of other organisms.
One element of classical systems analysis treats a system as a black or grey box, the inner structure and behaviour of which can be analysed and modelled by varying an internal or external condition, probing it from outside and studying the effect of the variation on the external observables. The result is an understanding of the inner make-up and workings of the system. The equivalent of this in biology is to observe what a cell or system excretes under controlled conditions - the 'metabolic footprint' or exometabolome - as this is readily and accurately measurable. Here, we review the principles, experimental approaches and scientific outcomes that have been obtained with this useful and convenient strategy.
The chemical identification of mass spectrometric signals in metabolomic applications is important to provide conversion of analytical data to biological knowledge about metabolic pathways. The complexity of electrospray mass spectrometric data acquired from a range of samples (serum, urine, yeast intracellular extracts, yeast metabolic footprints, placental tissue metabolic footprints) has been investigated and has defined the frequency of different ion types routinely detected. Although some ion types were expected (protonated and deprotonated peaks, isotope peaks, multiply charged peaks) others were not expected (sodium formate adduct ions). In parallel, the Manchester Metabolomics Database (MMD) has been constructed with data from genome scale metabolic reconstructions, HMDB, KEGG, Lipid Maps, BioCyc and DrugBank to provide knowledge on 42,687 endogenous and exogenous metabolite species. The combination of accurate mass data for a large collection of metabolites, theoretical isotope abundance data and knowledge of the different ion types detected provided a greater number of electrospray mass spectrometric signals which were putatively identified and with greater confidence in the samples studied. To provide definitive identification metabolite-specific mass spectral libraries for UPLC-MS and GC-MS have been constructed for 1,065 commercially available authentic standards. The MMD data are available at http://dbkgroup.org/MMD/.
We present an experimental and computational pipeline for the generation of kinetic models of metabolism, and demonstrate its application to glycolysis in Saccharomyces cerevisiae. Starting from an approximate mathematical model, we employ a “cycle of knowledge” strategy, identifying the steps with most control over flux. Kinetic parameters of the individual isoenzymes within these steps are measured experimentally under a standardised set of conditions. Experimental strategies are applied to establish a set of in vivo concentrations for isoenzymes and metabolites. The data are integrated into a mathematical model that is used to predict a new set of metabolite concentrations and reevaluate the control properties of the system. This bottom-up modelling study reveals that control over the metabolic network most directly involved in yeast glycolysis is more widely distributed than previously thought.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.