Multiple models of human metabolism have been reconstructed, but each represents only a subset of our knowledge. Here we describe Recon 2, a community-driven, consensus ‘metabolic reconstruction’, which is the most comprehensive representation of human metabolism that is applicable to computational modeling. Compared with its predecessors, the reconstruction has improved topological and functional features, including ~2× more reactions and ~1.7× more unique metabolites. Using Recon 2 we predicted changes in metabolite biomarkers for 49 inborn errors of metabolism with 77% accuracy when compared to experimental data. Mapping metabolomic data and drug information onto Recon 2 demonstrates its potential for integrating and analyzing diverse data types. Using protein expression data, we automatically generated a compendium of 65 cell type–specific models, providing a basis for manual curation or investigation of cell-specific metabolic properties. Recon 2 will facilitate many future biomedical studies and is freely available at http://humanmetabolism.org/.
Genomic data now allow the large-scale manual or semi-automated reconstruction of metabolic networks. A network reconstruction represents a highly curated organism-specific knowledge base. A few genome-scale network reconstructions have appeared for metabolism in the baker’s yeast Saccharomyces cerevisiae. These alternative network reconstructions differ in scope and content, and further have used different terminologies to describe the same chemical entities, thus making comparisons between them difficult. The formulation of a ‘community consensus’ network that collects and formalizes the ‘community knowledge’ of yeast metabolism is thus highly desirable. We describe how we have produced a consensus metabolic network reconstruction for S. cerevisiae. Special emphasis is laid on referencing molecules to persistent databases or using database-independent forms such as SMILES or InChI strings, since this permits their chemical structure to be represented unambiguously and in a manner that permits automated reasoning. The reconstruction is readily available via a publicly accessible database and in the Systems Biology Markup Language, and we describe the manner in which it can be maintained as a community resource. It should serve as a common denominator for system biology studies of yeast. Similar strategies will be of benefit to communities studying genome-scale metabolic networks of other organisms.
It is generally thought that many drug molecules are transported across biological membranes via passive diffusion at a rate related to their lipophilicity. However, the types of biophysical forces involved in the interaction of drugs with lipid membranes are no different from those involved in their interaction with proteins, and so arguments based on lipophilicity could also be applied to drug uptake by membrane transporters or carriers. In this article, we discuss the evidence supporting the idea that rather than being an exception, carrier-mediated and active uptake of drugs may be more common than is usually assumed - including a summary of specific cases in which drugs are known to be taken up into cells via defined carriers - and consider the implications for drug discovery and development.
IntroductionThe human genome-scale metabolic reconstruction details all known metabolic reactions occurring in humans, and thereby holds substantial promise for studying complex diseases and phenotypes. Capturing the whole human metabolic reconstruction is an on-going task and since the last community effort generated a consensus reconstruction, several updates have been developed.ObjectivesWe report a new consensus version, Recon 2.2, which integrates various alternative versions with significant additional updates. In addition to re-establishing a consensus reconstruction, further key objectives included providing more comprehensive annotation of metabolites and genes, ensuring full mass and charge balance in all reactions, and developing a model that correctly predicts ATP production on a range of carbon sources.MethodsRecon 2.2 has been developed through a combination of manual curation and automated error checking. Specific and significant manual updates include a respecification of fatty acid metabolism, oxidative phosphorylation and a coupling of the electron transport chain to ATP synthase activity. All metabolites have definitive chemical formulae and charges specified, and these are used to ensure full mass and charge reaction balancing through an automated linear programming approach. Additionally, improved integration with transcriptomics and proteomics data has been facilitated with the updated curation of relationships between genes, proteins and reactions.ResultsRecon 2.2 now represents the most predictive model of human metabolism to date as demonstrated here. Extensive manual curation has increased the reconstruction size to 5324 metabolites, 7785 reactions and 1675 associated genes, which now are mapped to a single standard. The focus upon mass and charge balancing of all reactions, along with better representation of energy generation, has produced a flux model that correctly predicts ATP yield on different carbon sources.ConclusionThrough these updates we have achieved the most complete and best annotated consensus human metabolic reconstruction available, thereby increasing the ability of this resource to provide novel insights into normal and disease states in human. The model is freely available from the Biomodels database (http://identifiers.org/biomodels.db/MODEL1603150001).Electronic supplementary materialThe online version of this article (doi:10.1007/s11306-016-1051-4) contains supplementary material, which is available to authorized users.
The ability to predict protein function from structure is becoming increasingly important as the number of structures resolved is growing more rapidly than our capacity to study function. Current methods for predicting protein function are mostly reliant on identifying a similar protein of known function. For proteins that are highly dissimilar or are only similar to proteins also lacking functional annotations, these methods fail. Here, we show that protein function can be predicted as enzymatic or not without resorting to alignments. We describe 1178 high-resolution proteins in a structurally non-redundant subset of the Protein Data Bank using simple features such as secondary-structure content, amino acid propensities, surface properties and ligands. The subset is split into two functional groupings, enzymes and non-enzymes. We use the support vector machine-learning algorithm to develop models that are capable of assigning the protein class. Validation of the method shows that the function can be predicted to an accuracy of 77% using 52 features to describe each protein. An adaptive search of possible subsets of features produces a simplified model based on 36 features that predicts at an accuracy of 80%. We compare the method to sequence-based methods that also avoid calculating alignments and predict a recently released set of unrelated proteins. The most useful features for distinguishing enzymes from nonenzymes are secondary-structure content, amino acid frequencies, number of disulphide bonds and size of the largest cleft. This method is applicable to any structure as it does not require the identification of sequence or structural similarity to a protein of known function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.