Over the past decade, a growing community of researchers has emerged around the use of COnstraint-Based Reconstruction and Analysis (COBRA) methods to simulate, analyze and predict a variety of metabolic phenotypes using genome-scale models. The COBRA Toolbox, a MATLAB package for implementing COBRA methods, was presented earlier. Here we present a significant update of this in silico ToolBox. Version 2.0 of the COBRA Toolbox expands the scope of computations by including in silico analysis methods developed since its original release. New functions include: (1) network gap filling, (2) 13C analysis, (3) metabolic engineering, (4) omics-guided analysis, and (5) visualization. As with the first version, the COBRA Toolbox reads and writes Systems Biology Markup Language formatted models. In version 2.0, we improved performance, usability, and the level of documentation. A suite of test scripts can now be used to learn the core functionality of the Toolbox and validate results. This Toolbox lowers the barrier of entry to use powerful COBRA methods.
Multiple models of human metabolism have been reconstructed, but each represents only a subset of our knowledge. Here we describe Recon 2, a community-driven, consensus ‘metabolic reconstruction’, which is the most comprehensive representation of human metabolism that is applicable to computational modeling. Compared with its predecessors, the reconstruction has improved topological and functional features, including ~2× more reactions and ~1.7× more unique metabolites. Using Recon 2 we predicted changes in metabolite biomarkers for 49 inborn errors of metabolism with 77% accuracy when compared to experimental data. Mapping metabolomic data and drug information onto Recon 2 demonstrates its potential for integrating and analyzing diverse data types. Using protein expression data, we automatically generated a compendium of 65 cell type–specific models, providing a basis for manual curation or investigation of cell-specific metabolic properties. Recon 2 will facilitate many future biomedical studies and is freely available at http://humanmetabolism.org/.
1 r e s o u r c eChanges in the composition of the human gut microbiota have been associated with the development of chronic diseases including type 2 diabetes, obesity, and colorectal cancer 1 . Gut bacterial functions, such as synthesis of amino acids and vitamins 2 , breakdown of indigestible plant polysaccharides 3 , and production of metabolites involved in energy metabolism 4 , have been linked to human health. The use of 'omics approaches to study human microbiome communities has led to the generation of enormous data sets whose interpretations require systems biology tools to shed light on the functional capacity of gut microbiomes and their interactions with the human host 5 .In order to infer the metabolic repertoire of a gut metagenome data set, researchers usually map sequenced genes or organisms onto metabolic networks derived from the Kyoto Encyclopedia of Genes and Genomes (KEGG) 6 , and functional annotations from KEGG ontologies 7 . However, this approach cannot identify the contribution of each bacterial species to the metabolic repertoire of the whole gut microbiome, nor can it infer the effects of different gut microbial communities on host metabolism.A technique that can bridge this gap is constraint-based reconstruction and analysis (COBRA) 8 using genome-scale metabolic reconstructions (GENREs) of individual human gut microbes. GENREs are assembled using the genome sequence and experimental information 9 . These reconstructions form the basis for the development of condition-specific metabolic models whose functions are simulated and validated by comparison with experimental results. The models can be used to investigate genotype-phenotype relationships 10 , microbe-microbe interactions 11 , and host-microbe interactions 11 . Numerous tools can be used to automatically generate draft GENREs but such models contain errors 12 and are incomplete.Manual curation of draft reconstructions is time consuming because it involves an extensive literature review and experimental validation of metabolic functions 9 .To provide an extensive resource of GENREs for human gut microbes, we developed a comparative metabolic reconstruction method that enables any refinement to one metabolic reconstruction to be propagated to others. This accelerates reconstruction and improves model quality. We generated AGORA, which includes 773 gut microbes, comprising 205 genera and 605 species. All reconstructions were based on literature-derived experimental data and comparative genomics. The metabolic predictions of two AGORA reconstructions and their derived metabolic models were validated against experimental data. RESULTS Metabolic reconstruction pipelineWe devised a comparative metabolic reconstruction method (Fig. 1a,c), which is analogous to the comparative microbial genome annotation approach 13 that has enabled accelerated annotation by propagation of refinements to one genome to others. First, we downloaded draft GENREs using Model SEED 14 and KBase (US Department of Energy Systems Biology Knowledgebase, http:/...
Genome-scale network reconstructions have helped uncover the molecular basis of metabolism. Here we present Recon3D, a computational resource that includes three-dimensional (3D) metabolite and protein structure data and enables integrated analyses of metabolic functions in humans. We use Recon3D to functionally characterize mutations associated with disease, and identify metabolic response signatures that are caused by exposure to certain drugs. Recon3D represents the most comprehensive human metabolic network model to date, accounting for 3,288 open reading frames (representing 17% of functionally annotated human genes), 13,543 metabolic reactions involving 4,140 unique metabolites, and 12,890 protein structures. These data provide a unique resource for investigating molecular mechanisms of human metabolism. Recon3D is available at http://vmh.life.
Culture of cells using various microfluidic devices is becoming more common within experimental cell biology. At the same time, a technological radiation of microfluidic cell culture device designs is currently in progress. Ultimately, the utility of microfluidic cell culture will be determined by its capacity to permit new insights into cellular function. Especially insights that would otherwise be difficult or impossible to obtain with macroscopic cell culture in traditional polystyrene dishes, flasks or well-plates. Many decades of heuristic optimization have gone into perfecting conventional cell culture devices and protocols. In comparison, even for the most commonly used microfluidic cell culture devices, such as those fabricated from polydimethylsiloxane (PDMS), collective understanding of the differences in cellular behavior between microfluidic and macroscopic culture is still developing. Moving in vitro culture from macroscopic culture to PDMS based devices can come with unforeseen challenges. Changes in device material, surface coating, cell number per unit surface area or per unit media volume may all affect the outcome of otherwise standard protocols. In this review, we outline some of the advantages and challenges that may accompany a transition from macroscopic to microfluidic cell culture. We focus on decisive factors that distinguish macroscopic from microfluidic cell culture to encourage a reconsideration of how macroscopic cell culture principles might apply to microfluidic cell culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.