Glioblastoma multiforme (GB) is the most malignant primary brain tumor in humans, with an overall survival of approximatively 15 months. The molecular heterogeneity of GB, as well as its rapid progression, invasiveness and the occurrence of drug-resistant cancer stem cells, limits the efficacy of the current treatments. In order to develop an innovative therapeutic strategy, it is mandatory to identify and characterize new molecular players responsible for the GB malignant phenotype. In this study, the RNA-binding ubiquitin ligase MEX3A was selected from a gene expression analysis performed on publicly available datasets, to assess its biological and still-unknown activity in GB tumorigenesis. We find that MEX3A is strongly up-regulated in GB specimens, and this correlates with very low protein levels of RIG-I, a tumor suppressor involved in differentiation, apoptosis and innate immune response. We demonstrate that MEX3A binds RIG-I and induces its ubiquitylation and proteasome-dependent degradation. Further, the genetic depletion of MEX3A leads to an increase of RIG-I protein levels and results in the suppression of GB cell growth. Our findings unveil a novel molecular mechanism involved in GB tumorigenesis and suggest MEX3A and RIG-I as promising therapeutic targets in GB.Cancers 2020, 12, 321 2 of 16 treatments [2]. The current therapeutic protocol for GB patients consists of surgical resection of tumor mass and subsequent concomitant radiotherapy and chemotherapy. However, these approaches show very limited effectiveness, resulting in a high rate of relapse and subsequent deterioration of the patient's neurological and physiological status [2,5].In the recent years, several genetic and epigenetic aberrations in molecular pathways (i.e., WNT and Hedgehog signaling) [6-9] have been associated with GB onset and progression, representing potential therapeutic targets and biomarkers for early prognosis [2,3,5]. Hence, the identification and characterization of new molecular players involved in GB tumorigenesis is essential for developing more effective and innovative therapies against this aggressive malignancy.Ubiquitylation is a post-translational modification that controls a wide range of cellular functions (i.e., protein degradation, endocytosis and trafficking) and the most important physiological processes [10,11]. Ubiquitylation is mediated by an enzymatic cascade, in which the E3-ubiquitin ligases are the main players, responsible for the recognition of specific substrates and the final transferring of ubiquitin moieties onto target proteins.Deregulation or mutations of E3-ubiquitin ligases have been associated with several human tumors; for this reason, they are considered to be promising targets for novel anticancer therapies [12][13][14]. At present, very little information is available about the role of E3 ligases and ubiquitylation processes in GB development and progression [15][16][17].In this regard, we evaluated the expression levels of catalytic E3-ubiquitin ligase complex components [18] and F-b...
Pharmacological Hedgehog (Hh) pathway inhibition has emerged as a valuable anticancer strategy. A number of small molecules able to block the pathway at the upstream receptor Smoothened (Smo) or the downstream effector glioma-associated oncogene 1 (Gli1) has been designed and developed. In a recent study, we exploited the high versatility of the natural isoflavone scaffold for targeting the Hh signaling pathway at multiple levels showing that the simultaneous targeting of Smo and Gli1 provided synergistic Hh pathway inhibition stronger than single administration. This approach seems to effectively overcome the drug resistance, particularly at the level of Smo. Here, we combined the pharmacophores targeting Smo and Gli1 into a single and individual isoflavone, compound 22, which inhibits the Hh pathway at both upstream and downstream level. We demonstrate that this multitarget agent suppresses medulloblastoma growth in vitro and in vivo through antagonism of Smo and Gli1, which is a novel mechanism of action in Hh inhibition.
Glioblastoma (GB) is an incurable form of brain malignancy in an adult with a median survival of less than 15 months. The current standard of care, which consists of surgical resection, radiotherapy, and chemotherapy with temozolomide, has been unsuccessful due to an extensive inter- and intra-tumoral genetic and molecular heterogeneity. This aspect represents a serious obstacle for developing alternative therapeutic options for GB. In the last years, immunotherapy has emerged as an effective treatment for a wide range of cancers and several trials have evaluated its effects in GB patients. Unfortunately, clinical outcomes were disappointing particularly because of the presence of tumor immunosuppressive microenvironment. Recently, anti-cancer approaches aimed to improve the expression and the activity of RIG-I-like receptors (RLRs) have emerged. These innovative therapeutic strategies attempt to stimulate both innate and adaptive immune responses against tumor antigens and to promote the apoptosis of cancer cells. Indeed, RLRs are important mediators of the innate immune system by triggering the type I interferon (IFN) response upon recognition of immunostimulatory RNAs. In this mini-review, we discuss the functions of RLRs family members in the control of immune response and we focus on the potential clinical application of RLRs agonists as a promising strategy for GB therapy.
Withanolides constitute a well‐known family of plant‐based alkaloids characterised by widespread biological properties, including the ability of interfering with Hedgehog (Hh) signalling pathway. Following our interest in natural products and in anticancer compounds, we report here the synthesis of a new class of Hh signalling pathway inhibitors, inspired by withaferin A, the first isolated member of withanolides. The decoration of our scaffolds was rationally supported by in silico studies, while functional evaluation revealed promising candidates, confirming once again the importance of natural products as inspiration source for the discovery of novel bioactive compounds. A stereoselective approach, based on Brown chemistry, allowed the obtainment and the functional evaluation of the enantiopure hit compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.