There is currently a lack of consensus on how biogas processes should be started and run in order to obtain stable, efficient operation. Agreement on start-up and operating parameters would increase the quality of research, allow better comparison of scientific results and increase the applicability of new findings in a general perspective. It would also help full-scale operators avoid common costly mistakes during start-up and operation of biogas processes. The biogas protocol presented in this paper describes appropriate approaches for characterisation of substrate, determination of methane potential, formulation of a suitable substrate, start-up of reactors and monitoring and operation of the biogas process in CSTR reactors.
The effect of a temperature decrease from 33 degrees C to 12 degrees C was investigated for anaerobic digestion of crop residues. A laboratory-scale reactor (R0) was inoculated with mesophilic sludge and operated as continuously stirred fed-batch system at temperatures of 12 degrees C, 18 degrees C and 33 degrees C. Changes in the microbial populations of the sludge were followed by means of fluorescence in situ hybridization analysis. Methane was produced in R0 at all temperatures. Stable long-term operation at 18 degress C was achieved yielding 151 mlCH4 gVS(added(-1) at a rate of 108 mlCH4 l(R)(-1)d(-1) once the microbial populations of the sludge had adapted to this temperature. After operation at 18 degrees C, the contents of R0 was mixed and distributed into three smaller reactors, which were operated at 18 degrees C (R18), 25 degrees C (R25) and 37 degrees C (R37), respectively. Methane production rates for R37 and R25 were 366 and 310 mlCH4 l(R)(-1)d(-1), respectively, which were higher than the 215 mlCH4 l(R)(-1)d(-1) obtained in R0 when this was operated at 33 degrees C. Hydrolysis was found to decrease when temperature was decreased and especially below 25 degrees C. At temperatures below 16 degrees C, acidogenesis and methanogenesis were the rate-limiting steps. Adaptation of the mesophilic sludge to 18 degrees C was indicated by an increase in the ratio of Bacteria to total prokaryotes (sum of Archaea and Bacteria). This was thought to be caused by enrichment of Bacteria in the sludge, which appeared to be an important adaptation mechanism. During the adaptation, the Methanomicrobiales and Methanosarcinaceae populations increased relative to the total Archaea population whereas the Methanosaeta population decreased. The population changes were reflected by reactor performance.
Several treatment alternatives for food waste can result in both energy and nutrient recovery, and thereby potential environmental benefits. However, according to the European Union waste management hierarchy, waste prevention should be the prioritized strategy to decrease the environmental burdens from all solid waste management. The aim of the present study was therefore to investigate the potential for food waste minimization among Swedish households through an investigation of the amount of avoidable food waste currently disposed of. A further aim was to investigate the effect on the national biogas production potential through anaerobic digestion of food waste, considering minimization potentials. A method for waste composition analyses of household food waste, where a differentiation between avoidable and unavoidable food waste is made, was used in a total of 24 waste composition analyses of household waste from Swedish residential areas. The total household food waste generation reached 3.4 kg (household and week)(-1), on average, of which 34% is avoidable. The theoretical methane (CH4) potential in unavoidable food waste reached 442 Ndm(3) (kg VS)(-1) or 128 Nm(3) tonne(-1) wet waste, while the measured (mesophilic CH4 batch tests) CH4 production reached 399 Ndm(3) (kg VS)(-1), which is lower than several previous assessments of CH4 production from household food waste. According to this study the combination of a decrease in food waste generation-in case of successful minimization-and decreased CH4 production from unavoidable food waste will thus result in lower total potential energy recovery from household food waste through anaerobic digestion CH4 potential than previously stated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.