The Image Biomarker Standardization Initiative validated consensus-based reference values for 169 radiomics features, thus enabling calibration and verification of radiomics software. Key results: • research teams found agreement for calculation of 169 radiomics features derived from a digital phantom and a human lung cancer on CT scan. • Of these 169 candidate radiomics features, good to excellent reproducibility was achieved for 167 radiomics features using MRI, 18F-FDG PET and CT images obtained in 51 patients with soft-tissue sarcoma.
Monte Carlo simulation is an essential tool in emission tomography that can assist in the design of new medical imaging devices, the optimization of acquisition protocols and the development or assessment of image reconstruction algorithms and correction techniques. GATE, the Geant4 Application for Tomographic Emission, encapsulates the Geant4 libraries to achieve a modular, versatile, scripted simulation toolkit adapted to the field of nuclear medicine. In particular, GATE allows the description of time-dependent phenomena such as source or detector movement, and source decay kinetics. This feature makes it possible to simulate time curves under realistic acquisition conditions and to test dynamic reconstruction algorithms. This paper gives a detailed description of the design and development of GATE by the OpenGATE collaboration, whose continuing objective is to improve, document and validate GATE by simulating commercially available imaging systems for PET and SPECT. Large effort is also invested in the ability and the flexibility to model novel detection systems or systems still under design. A public release of GATE licensed under the GNU Lesser General Public License can be downloaded at http:/www-lphe.epfl.ch/GATE/. Two benchmarks developed for PET and SPECT to test the installation of GATE and to serve as a tutorial for the users are presented. Extensive validation of the GATE simulation platform has been started, comparing simulations and measurements on commercially available acquisition systems. References to those results are listed. The future prospects towards the gridification of GATE and its extension to other domains such as dosimetry are also discussed.
PET has the invaluable advantage of being intrinsically quantitative, enabling accurate measurements of tracer concentrations in vivo. In PET tumor imaging, indices characterizing tumor uptake, such as standardized uptake values, are becoming increasingly important, especially in the context of monitoring the response to therapy. However, when tracer uptake in small tumors is measured, large biases can be introduced by the partialvolume effect (PVE). The purposes of this article are to explain what PVE is and to describe its consequences in PET tumor imaging. The parameters on which PVE depends are reviewed. Actions that can be taken to reduce the errors attributable to PVE are described. Various PVE correction schemes are presented, and their applicability to PET tumor imaging is discussed.
Textural and shape analysis is gaining considerable interest in medical imaging, particularly to identify parameters characterizing tumor heterogeneity and to feed radiomic models. Here, we present a free, multiplatform, and easy-to-use freeware called LIFEx, which enables the calculation of conventional, histogram-based, textural, and shape features from PET, SPECT, MR, CT, and US images, or from any combination of imaging modalities. The application does not require any programming skills and was developed for medical imaging professionals. The goal is that independent and multicenter evidence of the usefulness and limitations of radiomic features for characterization of tumor heterogeneity and subsequent patient management can be gathered. Many options are offered for interactive textural index calculation and for increasing the reproducibility among centers. The software already benefits from a large user community (more than 800 registered users), and interactions within that community are part of the development strategy. Significance: This study presents a user-friendly, multi-platform freeware to extract radiomic features from PET, SPECT, MR, CT, and US images, or any combination of imaging modalities. Cancer Res; 78(16); 4786–9. ©2018 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.