A study was undertaken with the aim of identifying a suitable plant for the phytoremediation of metal-polluted soil from an artisanal mining area in Ecuador. Three zones including a natural zone (NZ), abandoned zone (AZ) and intensively mined zone (IZ) were selected. Three common native plants grown in the three zones were identified and collected, including Miconia zamorensis, Axonopus compressus and Erato polymnioides. The percentage of arbuscular mycorrhizal colonization that benefits their own survival in polluted soil was analyzed in the root samples of these candidate species. Analysis of the soils and plants collected from the different zones showed that the concentrations of Pb, Zn, Cu and Cd were comparatively lower in the NZ, higher in the AZ and IZ, and highest in the AZ for all the metals. The concentration of all these metals in plant tissues was the highest in E. polymnioides. The data analysis including the metal accumulation index, bioconcentration factor and translocation factor strongly identified E. polymnioides as a hyperaccumulator plant suitable for phytoremediation.
In tropical forests of southern Ecuador, artisanal gold mining releases heavy metals that become xenobiotic with indefinite circulation and eventual bioaccumulation. Restoration and rehabilitation of degraded mining sites represent a major ecological, technological and economic issue. In this study, we estimate the capacity of two native woody plants to accumulate cadmium (Cd), lead (Pb), zinc (Zn) and mercury (Hg), with the goal of developing effective strategies for phytoremediation of mining sites. Individuals of Erato polymnioides and Miconia sp., as well as their rhizospheric soils, were sampled from a natural zone (NZ) of montane cloud forest, used as a control, and a polluted zone (PZ) subjected to active gold mining. Concentrations of the four heavy metals were analyzed using atomic absorption spectrophotometry. Cd, Zn and Hg concentrations were higher in soils of PZ than NZ. Bioaccumulation (BCF) and translocation factors (TF) showed that Miconia sp. has potential for Cd and Zn phytostabilization, E. polymnioides has potential for Cd and Zn phytoextraction, and both species have potential for Hg phytoextraction. Despite the low productivity of these species, their adaptability to the edaphoclimatic conditions of the region and the possibility of using amendments to increase their biomass could compensate for the effectiveness of these species in reclaiming soils contaminated by mining.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.