Streptococcus pneumoniae
is responsible for high morbidity and mortalities rates worldwide, affecting mainly children and adults older than 65 years. Pneumococcus is also the most common etiologic agent of bacterial pneumonia and nonepidemic meningitis, and it is a frequent cause of bacterial sepsis.
In our previous work, we evaluated the therapeutic effects of 1α,25-Dihydroxyvitamin D3, the biologically active form of vitamin D, in the context of bleomycin-induced lung fibrosis. Contrary to the expected, vitamin D supplementation increased the DNA damage expression and cellular senescence in alveolar epithelial type II cells and aggravated the overall lung pathology induced in mice by bleomycin. These effects were probably due to an alteration in the cellular DNA double-strand breaks’ repair capability. In the present work, we have evaluated the effects of two hypocalcemic vitamin D analogs (calcipotriol and paricalcitol) in the expression of DNA damage in the context of minilungs derived from human embryonic stem cells and in the cell line A549.
Respiratory disease is one of the leading causes of morbidity and mortality worldwide. There is no cure for most diseases, which are treated symptomatically. Hence, new strategies are required to deepen the understanding of the disease and development of therapeutic strategies. The advent of stem cell and organoid technology has enabled the development of human pluripotent stem cell lines and adequate differentiation protocols for developing both airways and lung organoids in different formats. These novel human-pluripotent-stem-cell-derived organoids have enabled relatively accurate disease modeling. Idiopathic pulmonary fibrosis is a fatal and debilitating disease that exhibits prototypical fibrotic features that may be, to some extent, extrapolated to other conditions. Thus, respiratory diseases such as cystic fibrosis, chronic obstructive pulmonary disease, or the one caused by SARS-CoV-2 may reflect some fibrotic aspects reminiscent of those present in idiopathic pulmonary fibrosis. Modeling of fibrosis of the airways and the lung is a real challenge due to the large number of epithelial cells involved and interaction with other cell types of mesenchymal origin. This review will focus on the status of respiratory disease modeling from human-pluripotent-stem-cell-derived organoids, which are being used to model several representative respiratory diseases, such as idiopathic pulmonary fibrosis, cystic fibrosis, chronic obstructive pulmonary disease, and COVID-19.
BackgroundIn our previous work, we evaluated the therapeutic effects of 1α,25-Dihydroxyvitamin D3, the biologically active form of vitamin D, in the context of bleomycin-induced lung fibrosis. Contrary to the expected, vitamin D supplementation increased DNA damage expression and cellular senescence in alveolar epithelial type II cells and aggravated the overall lung pathology induced in mice by bleomycin. These effects were probably due to an alteration of the cellular DNA double-strand breaks repair capability. In the present work we have evaluated the effects of two hypocalcemic vitamin D analogs (calcipotriol and paricalcitol) in the expression of DNA damage in the context of minilungs derived from human embryonic stem cells and in the cell line A549.ResultsAs in the case of the cell line A549, bleomycin can induce DNA damage in the generated minilungs enriched in alveolar cells. The results indicate that, in contrast to vitamin D, the treatment of the minilungs with the hypocalcemic analogs reduce significantly the bulk of DNA damage expression in both bidimensional arrays of epithelial cells (2D minilungs) and lung bud organoids (3D minilungs). The initial evaluation of a battery of commercially available vitamin D analogs shows a significant reduction in A549 cells of gH2AFX expression levels, a marker of DNA damage, cell senescence and aging.ConclusionsThe treatments based in hypocalcemic vitamin D analogs might be used to reduce the bulk of DNA damage and eventually the subsequent cell senescence expression that underlie lung conditions as those that can evolve with fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.