Introduction Rapid environmental change driven by urbanization offers a unique insight into the adaptive potential of urban‐dwelling organisms. Urban‐driven phenotypic differentiation is increasingly often demonstrated, but the impact of urbanization (here modelled as the percentage of impervious surface (ISA) around each nestbox) on offspring developmental rates and subsequent survival remains poorly understood. Furthermore, the role of selection on urban‐driven phenotypic divergence was rarely investigated to date. Methods and Results Data on nestling development and body mass were analysed in a gradient of urbanization set in Warsaw, Poland, in two passerine species: great tits (Parus major) and blue tits (Cyanistes caeruleus). Increasing levels of impervious surface area (ISA) delayed the age of fastest growth in blue tits. Nestling body mass was also negatively affected by increasing ISA 5 and 10 days after hatching in great tits, and 10 and 15 days in blue tits, respectively. High levels of ISA also increased nestling mortality 5 and 10 days after hatching in both species. An analysis of selection differentials performed for two levels of urbanization (low and high ISA) revealed a positive association between mass at day 2 and survival at fledging. Discussion This study confirms the considerable negative impact of imperviousness—a proxy for urbanization level—on offspring development, body mass and survival, and highlights increased selection on avian mass at hatching in a high ISA environment.
To mitigate the shortage of natural breeding sites in cities, nest-boxes are provided for cavity-nesters. However, these are not the breeding sites these animals originally evolved in and optimised their breeding performance to. It thus remains inconclusive if nest-boxes can provide adequate substitutes, ensuring equivalent fitness returns for breeding animals. Additionally, the majority of knowledge on the ecology of urban birds comes from nest-box populations, but no study to date directly compared fitness consequences of breeding inside nest-boxes in relation to natural-cavities in an urban context. This limits our understanding of the urban ecology of cavity-nesters and addressing its functional meaning. We investigate fitness consequences and life-history trait variation according to the nesting site type to provide a comprehensive understanding of conservation potential of nest-boxes in cities and to support/question generalisations stemming from nest-box studies on urbanization. We directly compare the reproductive performance of two small passerines, blue tits and great tits, breeding in nest-boxes as opposed to natural-cavities in a seminatural forest of a capital city using a quasi-experimental setting. We show that the effects of nest type vary between species: in blue tits, fitness proxies were negatively affected by nest-boxes (lower fledging success and fledgling numbers, longer time spent in nest and later fledging date in comparison to natural-cavities), while great tit performance appeared to be unaffected by nest type. We detected that both species breeding in nest-boxes accelerated incubation onset, but since there were no major differences in pre-hatching traits (lay date, clutch size, hatching rates) between the nest types, we attribute the fitness deterioration to post-hatching effects. Interestingly, overall breeding density of tits in urban natural-cavities was higher than observed in a primeval habitat. Nestboxes may become an ecological trap for some species and the unaffected species can consequently outcompete them, decreasing overall biodiversity in cities. We highlight the ecological importance of oldgrowth tree stands, providing natural tree cavities for city-breeding animals. Due to the detected nest type-dependent variation in reproductive performance, we support the criticism regarding the 3 unconditional extrapolation of evolutionary and ecological interpretations of nest-box studies to general populations. Supporting InformationNest-boxes alter the reproductive ecology of urban cavity-nesters in a species-dependent way
BackgroundTicks are obligate haematophagous ectoparasites of vertebrates and frequently parasitize avian species that can carry them across continents during their long-distance migrations. Ticks may have detrimental effects on the health state of their avian hosts, which can be either directly caused by blood-draining or mediated by microbial pathogens transmitted during the blood meal. Indeed, ticks host complex microbial communities, including bacterial pathogens and symbionts. Midichloria bacteria (Rickettsiales) are widespread tick endosymbionts that can be transmitted to vertebrate hosts during the tick bite, inducing an antibody response. Their actual role as infectious/pathogenic agents is, however, unclear.MethodsWe screened for Midichloria DNA African ticks and blood samples collected from trans-Saharan migratory songbirds at their arrival in Europe during spring migration.ResultsTick infestation rate was 5.7%, with most ticks belonging to the Hyalomma marginatum species complex. Over 90% of Hyalomma ticks harboured DNA of Midichloria bacteria belonging to the monophylum associated with ticks. Midichloria DNA was detected in 43% of blood samples of avian hosts. Tick-infested adult birds were significantly more likely to test positive to the presence of Midichloria DNA than non-infested adults and second-year individuals, suggesting a long-term persistence of these bacteria within avian hosts. Tick parasitism was associated with a significantly delayed timing of spring migration of avian hosts but had no significant effects on body condition, whereas blood Midichloria DNA presence negatively affected fat deposits of tick-infested avian hosts.ConclusionsOur results show that ticks effectively transfer Midichloria bacteria to avian hosts, supporting the hypothesis that they are infectious to vertebrates. Bird infection likely enhances the horizontal spread of these bacteria across haematophagous ectoparasite populations. Moreover, we showed that Midichloria and tick parasitism have detrimental non-independent effects on avian host health during migration, highlighting the complexity of interactions involving ticks, their vertebrate hosts, and tick-borne bacteria.Electronic supplementary materialThe online version of this article (10.1186/s13071-018-2669-z) contains supplementary material, which is available to authorized users.
Animals breeding in anthropogenic shelters such as nest-boxes experience nesting environment in which they did not originally evolve. Over the past decades, they are additionally challenged by climate change – a major environmental force influencing their reproductive ecology. Despite the central importance of nesting microclimate for offspring development and fitness, very little is known about the thermal properties of human-provided nests compared to natural ones. While it has been demonstrated that artificial nests provide poorer thermal insulation in comparison to natural breeding sites, there is no evidence on how these shifts are shaped along the reproductive stages. In particular, comparisons focusing on the time when offspring are in the nest are lacking. Here, we compare the microclimatic conditions (temperature and absolute humidity) along the nesting cycle (from nest-site choice in early spring until post-fledging) in natural cavities and nest-boxes used by several species of hollow-nesting passerines in a temperate deciduous forest. We confirm that across all nesting stages, nest-boxes are thermally unstable when compared to natural cavities, with higher temperature maximums, larger amplitudes and worse insulation from maximum ambient temperatures relative to natural cavities. Importantly, in the presence of young, and after they start to thermoregulate on their own, nest-boxes are also more humid than natural cavities. Artificial nest microclimate is likely to amplify the adverse effects of projected temperature increases modelled under climate change scenarios, specifically by compromising thermoregulation and increasing water requirements of developing animals. In contrast, internal microclimatic shifts were mitigated in natural cavities 3.0 times more effectively than in nest-boxes when offspring were in the nest (in terms of mean daily differences from ambient temperature). We stress that conservation efforts should focus on the protection of habitats offering natural breeding-hollows to reduce climate change impacts on breeding animals.
Animals breeding in nest‐boxes experience nesting environments in which they did not originally evolve. Despite the central importance of nesting microclimate for offspring fitness, little is known about the thermal properties of human‐provided nest sites compared to natural ones. In particular, comparisons with offspring in the nest are lacking. Here, we compare microclimate (temperature and absolute humidity) from the onset of breeding, thus starting with nest‐site choice and ending with the post‐fledging stage, quantified in natural cavities and nest‐boxes used by several species of hollow‐nesting birds in a temperate deciduous forest. We confirm that across all nesting stages, nest‐boxes were thermally unstable when compared to natural cavities, with higher temperature maximums, larger amplitudes and worse insulation from maximum ambient temperatures relative to natural cavities. Surprisingly, as average humidity of natural cavities was previously shown to be higher than in nest‐boxes, in the presence of actively thermoregulating young, nest‐boxes were more humid than natural cavities. When offspring were in the nest, internal microclimatic shifts were mitigated three times more effectively in natural cavities than in nest‐boxes (in terms of mean daily differences from ambient temperature). Artificial cavity microclimate is likely to amplify the adverse effects of projected temperature increases by compromising thermoregulation of developing animals. We stress that conservation efforts should focus on the protection of areas offering natural breeding‐hollows to reduce the potential impacts of climate change on breeding animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.