Salmonella enterica subsp. enterica serotype Choleraesuis is a foodborne pathogen with zoonotic potential. We report the draft genome sequence and a closed plasmid sequence from a plant-internalized S. Choleraesuis strain that was isolated from the pulp of a Spanish Galia melon purchased from a German supermarket in 2015.
Contamination of fresh produce with human pathogens poses an important risk for consumers, especially after raw consumption. Moreover, if microorganisms are internalized, no removal by means of further hygienic measures would be possible. Human pathogenic bacteria identified in these food items are mostly of human or animal origin and an adaptation to this new niche and particularly for internalization would be presumed. This study compares a plant-internalized and an animal-borne Salmonella enterica subsp. enterica serovar Choleraesuis aiming at the identification of adaptation of the plant-internalized strain to its original environment. For this purpose, a phenotypical characterization by means of growth curves under conditions resembling the indigenous environment from the plant-internalized strain and further analyses using Pulsed-field gel electrophoresis and Matrix-assisted laser desorption ionization time of flight spectrometry were assessed. Furthermore, comparative genomic analyses by means of single nucleotide polymorphisms and identification of present/absent genes were performed. Although some phenotypical and genetic differences could be found, no signs of a specific adaptation for colonization and internalization in plants could be clearly identified. This could suggest that any Salmonella strain could directly settle in this niche without any evolutionary process being necessary. Further comparative analysis including internalized strains would be necessary to assess this question. However, these kinds of strains are not easily available.
Ostrich meat is characterized by high nutritional value; however, it remains an exotic product in most countries worldwide. In Europe, only few data are available regarding its microbial contamination, prevalence of antimicrobial-resistant bacteria, and safety. Therefore, this study aimed to investigate the microbiological quality and safety of ostrich meat samples (n = 55), each from one animal, produced in Bavaria, Germany. The provided microbiological status of ostrich meat included mesophilic aerobic bacteria, Enterobacteria, and mesophilic yeast and molds. In terms of food safety, all meat samples were negative for Salmonella spp. and Trichinella spp. Additionally, meat samples and a further 30 stool samples from 30 individuals were investigated for Shiga toxin-producing Escherichia coli genes, with two meat samples that were qPCR-positive. Antimicrobial-resistant Enterobacteriaceae, Enterococcus faecalis, and Enterococcus faecium strains were from meat and stool samples also analyzed; 13 potentially resistant Enterobacteriaceae (meat samples) and 4 Enterococcus faecium (stool samples) were isolated, and their susceptibility against 29 and 14 antimicrobials, respectively, was characterized. The results of this study provide an overview of microbial loads and food safety aspects that may be used as baseline data for the ostrich meat industry to improve their hygienic quality. However, the implementation of monitoring programs is recommended, and microbiological standards for ostrich meat production should be established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.