We compared gene expression profiles of mouse and human ES cells by immunocytochemistry, RT-PCR, and membrane-based focused cDNA array analysis. Several markers that in concert could distinguish undifferentiated ES cells from their differentiated progeny were identified. These included known markers such as SSEA antigens, OCT3/4, SOX-2, REX-1 and TERT, as well as additional markers such as UTF-1, TRF1, TRF2, connexin43, and connexin45, FGFR-4, ABCG-2, and Glut-1. A set of negative markers that confirm the absence of differentiation was also developed. These include genes characteristic of trophoectoderm, markers of germ layers, and of more specialized progenitor cells. While the expression of many of the markers was similar in mouse and human cells, significant differences were found in the expression of vimentin, beta-III tubulin, alpha-fetoprotein, eomesodermin, HEB, ARNT, and FoxD3 as well as in the expression of the LIF receptor complex LIFR/IL6ST (gp130). Profound differences in cell cycle regulation, control of apoptosis, and cytokine expression were uncovered using focused microarrays. The profile of gene expression observed in H1 cells was similar to that of two other human ES cell lines tested (line I-6 and clonal line-H9.2) and to feeder-free subclones of H1, H7, and H9, indicating that the observed differences between human and mouse ES cells were species-specific rather than arising from differences in culture conditions.
Human embryonic stem (huES) cells have the ability to differentiate into a variety of cell lineages and potentially provide a source of differentiated cells for many therapeutic uses. However, little is known about the mechanism of differentiation of huES cells and factors regulating cell development. We have used high-quality microarrays containing 16 659 seventy-base pair oligonucleotides to examine gene expression in 6 of the 11 available huES cell lines. Expression was compared against pooled RNA from multiple tissues (universal RNA) and genes enriched in huES cells were identified. All 6 cell lines expressed multiple markers of the undifferentiated state and shared significant homology in gene expression (overall similarity coefficient > 0.85). A common subset of 92 genes was identified that included Nanog, GTCM-1, connexin 43 (GJA1), oct-4, and TDGF1 (cripto). Gene expression was confirmed by a variety of techniques including comparison with databases, reverse transcriptase-polymerase chain reaction, focused cDNA microarrays, and immunocytochemistry. Comparison with published "stemness" genes revealed a limited overlap, suggesting little similarity with other stem cell populations. Several novel ES cell-specific expressed sequence tags were identified and mapped to the human genome. These results represent the first detailed characterization of undifferentiated huES cells and provide a unique set of markers to profile and better understand the biology of huES
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.