Non-classical protein release independent of the ER-Golgi pathway has been reported for an increasing number of proteins lacking an N-terminal signal sequence. The export of FGF1 and IL-1α, two pro-angiogenic polypeptides, provides two such examples. In both cases, export is based on the Cu 2+ -dependent formation of multiprotein complexes containing the S100A13 protein and might involve translocation of the protein across the membrane as a 'molten globule'. FGF1 and IL-1α are involved in pathological processes such as restenosis and tumor formation. Inhibition of their export by Cu 2+ chelators is thus an effective strategy for treatment of several diseases.
NOTCH signaling is an evolutionarily conserved signaling pathway that regulates cell fate during development and postnatal life. It has been increasingly linked to carcinogenesis, although its role in cancer seems to be highly context and tissue specific. Although NOTCH signaling is required for lung development, little is known about its role in lung cancer. In this study, we show that NOTCH signaling, as measured by the ;-secretase cleavage product N IC -1, is active in both normal human and lung tumor samples; however, downstream NOTCH readouts (i.e., HES-1 and HES-5) are elevated in lung tumors. Levels of NOTCH signaling components in primary human lung cells reflect observations in tissue samples, yet lung tumor cell lines showed little NOTCH signaling. Because oxygen concentrations are important in normal lung physiology and lung tumors are hypoxic, the effect of low oxygen on these lung tumor cell lines was evaluated. We found that hypoxia dramatically elevates NOTCH signaling (especially NOTCH-1) in lung tumor cell lines and concomitantly sensitizes them to inhibition via small-molecule ;-secretase inhibitors or NOTCH-1 RNA interference. ;-Secretase inhibitorinduced apoptosis of lung tumor cells grown under hypoxic conditions could be rescued by reintroduction of active NOTCH-1. Our data strengthen the role of NOTCH in lung cancer and as a therapeutic target for the treatment of lung and other hypoxic tumor types. [Cancer Res 2007;67(17):7954-9]
Malignant mesothelioma (MM) is a cancer of the lining of the lungs, heart, and intestine and is known to respond poorly to chemotherapy. Here we show
Copper is involved in the promotion of angiogenic and inflammatory events in vivo and, although recent clinical data has demonstrated the potential of Cu2+ chelators for the treatment of cancer in man, the mechanism for this activity remains unknown. We have previously demonstrated that the signal peptide-less angiogenic polypeptide, FGF1, uses intracellular Cu2+ to facilitate the formation of a multiprotein aggregate that enables the release of FGF1 in response to stress and that the expression of the precursor form but not the mature form of IL-1α represses the stress-induced export of FGF1 from NIH 3T3 cells. We report here that IL-1α is a Cu2+-binding protein and human U937 cells, like NIH 3T3 cells, release IL-1α in response to temperature stress in a Cu2+-dependent manner. We also report that the stress-induced export of IL-1α involves the intracellular association with the Cu2+-binding protein, S100A13. In addition, the expression of a S100A13 mutant lacking a sequence novel to this gene product functions as a dominant-negative repressor of IL-1α release, whereas the expression of wild-type S100A13 functions to eliminate the requirement for stress-induced transcription. Lastly, we present biophysical evidence that IL-1α may be endowed with molten globule character, which may facilitate its release through the plasma membrane. Because Cu2+ chelation also represses the release of FGF1, the ability of Cu2+ chelators to potentially serve as effective clinical anti-cancer agents may be related to their ability to limit the export of these proinflammatory and angiogenic signal peptide-less polypeptides into the extracellular compartment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.