A sensitive and robust analytical method for the quantification of glyphosate, aminomethylphosphonic acid (AMPA) and glufosinate in natural water has been developed on the basis of a derivatization with 9-fluorenylmethylchloroformate (FMOC-Cl), solid-phase extraction (SPE) and liquid chromatography followed by electrospray tandem mass spectrometry (LC-ESI-MS/MS). In order to maximize sensitivity, the derivatization was optimized regarding organic solvent content, amount of FMOC-Cl and reaction time. At an acetonitrile content of 10% a derivatization yield of 100% was reached within two hours in groundwater and surface water samples. After a twofold dilution the low acetonitrile content allowed solid-phase extraction of a sample of originally 80 mL over 200 mg Strata-X cartridges. In order to decrease the load of the LC column and mass spectrometer with derivatization by-products (e.g., 9-fluorenylmethanol FMOC-OH), a rinsing step was performed for the SPE cartridge with dichloromethane. Acidification of the sample and addition of EDTA was used to minimize complexation of the target compounds with metal ions in environmental samples. Due to the large sample volume and the complete FMOC-OH removal, limits of quantification of 0.7 ng/L, 0.8 ng/L and 2.3 ng/L were achieved in surface water for glyphosate, AMPA and glufosinate, respectively. The limits of detection were as low as 0.2 ng/L, 0.2 ng/L and 0.6 ng/L for glyphosate, AMPA and glufosinate, respectively. Surface water and ground water samples spiked at 2 ng/L showed recoveries of 91-107%.
Pesticide transport from seed dressings toward subsurface tile drains is still poorly understood. We monitored the neonicotinoid insecticides imidacloprid and thiamethoxam from sugar beet seed dressings in flow-proportional drainage water samples, together with spray applications of bromide and the herbicide S-metolachlor in spring and the fungicides epoxiconazole and kresoxim-methyl in summer. Event-driven, high first concentration maxima up to 2830 and 1290 ng/L for thiamethoxam and imidacloprid, respectively, were followed by an extended period of tailing and suggested preferential flow. Nevertheless, mass recoveries declined in agreement with the degradation and sorption properties collated in the groundwater ubiquity score, following the order bromide (4.9%), thiamethoxam (1.2%), imidacloprid (0.48%), kresoxim-methyl acid (0.17%), S-metolachlor (0.032%), epoxiconazole (0.013%), and kresoxim-methyl (0.003%), and indicated increased leaching from seed dressings compared to spray applications. Measured concentrations and mass recoveries indicate that subsurface tile drains contribute to surface water contamination with neonicotinoids from seed dressings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.