Hajós' conjecture states that an Eulerian graph of order n can be decomposed into at most ⌊ (n − 1) /2⌋ edge-disjoint cycles. We describe preprocessing steps, heuristics and integer programming techniques that enable us to verify Hajós' conjecture for all Eulerian graphs with up to twelve nodes.
Decomposing an Eulerian graph into a minimum respectively maximum number of edge disjoint cycles is an NP-complete problem. We prove that an Eulerian graph decomposes into a unique number of cycles if and only if it does not contain two edge disjoint cycles sharing three or more vertices. To this end, we discuss the interplay of three binary graph operators leading to novel constructive characterizations of two subclasses of Eulerian graphs. This enables us to present a polynomial-time algorithm which decides whether the number of cycles in a cycle decomposition of a given Eulerian graph is unique.
Hajós' conjecture asserts that a simple Eulerian graph on
n vertices can be decomposed into at most
⌊
(
n
−
1
)
/
2
⌋ cycles. The conjecture is only proved for graph classes in which every element contains vertices of degree 2 or 4. We develop new techniques to construct cycle decompositions. They work on the common neighborhood of two degree‐6 vertices. With these techniques, we find structures that cannot occur in a minimal counterexample to Hajós' conjecture and verify the conjecture for Eulerian graphs of pathwidth at most 6. This implies that these graphs satisfy the small cycle double cover conjecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.