We report on the first preparation of isolated ligand-free CaMn4O5 + gas-phase clusters, as well as other pentameric Ca x Mn5–x O5 + (x = 0–4) clusters with varying Ca contents, which serve as molecular models of the natural CaMn4O5 inorganic cluster in photosystem II. Ion trap reactivity studies with D2O and H2 18O reveal a pronounced cluster composition-dependent ability to mediate the oxidation of water to hydrogen peroxide. First-principles density functional theory simulations elucidate the mechanism of water oxidation, proceeding via formation of a terminal oxyl radical followed by oxyl/hydroxy (O/OH) coupling. The critical coupling reaction step entails a single electron transfer from the oxyl radical to the accommodating cluster core with a concurrent O/OH coupling forming an adsorbed OOH intermediate group. The spin-conserving electron transfer step takes place when the spin of the transferred electron is aligned with the spins of the d-electrons of the Mn atoms in the cuboidal high-spin cluster isomer. The d-electrons provide a ferromagnetically ordered environment that facilitates the spin-gated selective electron transfer process, resulting in parallel-spin-exchange stabilization and a lowered transition state barrier for the coupling reaction involving the frontier orbitals of the oxyl and hydroxy reactant intermediates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.