This study deals with the role of insulin in the regulation of the intestinal glycoprotein fucosylation process during postnatal development in the rat. Circulating insulin level was found to increase at weaning time in parallel with α-1,2-fucosyltransferase activity and with the appearance of α-1,2-fucoproteins in brush-border membranes. Insulin treatment of young suckling rats induced a precocious increase in fucosyltransferase activity and in the biosynthesis of its substrate (GDP-fucose), but the sensitivity to insulin disappeared after weaning. The insulin level was lower in 22-day-old rats that received prolonged nursing (on a high-fat diet) compared with age-matched normally weaned rats (on a high-carbohydrate diet), whereas the appearance of α-1,2-fucoproteins and the increase in activity of α-1,2-fucosyltransferase were delayed, as was the decrease in the degradation of GDP-fucose. In 22-day-old animals that received prolonged nursing and insulin treatment, the α-1,2-fucosyltransferase activity reached a level close to that observed in age-matched weaned rats, and several α-1,2-fucoproteins appeared in brush-border membranes with a molecular mass similar to that found in weaned rats. These results suggest that changes in insulin levels at weaning time (as caused, in the present case, by dietary modifications) may be responsible for the regulation of the glycoprotein fucosylation process, essentially by increasing fucosyltransferase activity.
This study considered the role of dietary polyamines in the maturation of intestinal glycoprotein galactosylation during postnatal development. In the rat small intestine, O-glycan: beta-1,3-galactosyltransferase and N-glycan: beta-1,4-galactosyltransferase are, respectively, involved in the glycan chain biosynthesis of mucins and of glycoproteins in the brush border membranes. Their activities increase significantly at weaning, in parallel with a rise in the intestinal content of spermidine and spermine (as determined by high performance liquid chromatography) and in proportion to the polyamine increase in food intake. The oral ingestion of spermidine or spermine (at 0.4 micromol/g body) by immature suckling rats for 4 d reproduced the levels of spermine and spermidine in their intestines at the time of weaning and induced precocious and significant rises in O-glycan: and N-glycan: galactosyltransferase activities to those normally found after weaning. In parallel, more galactose residues (detected in the complex oligosaccharide chains of glycoproteins by specific lectins after electrophoresis and transfer to nitrocellulose membranes) were observed in the brush border membranes of spermidine- and spermine-treated rats. In contrast, the ingestion of putrescine or ornithine had no effect. Diets with different levels of polyamines (milks and commercial diet), when given at weaning, induced variable evolutions of the galactosylation process, partly in relation to the amounts of polyamines ingested. These results indicate that spermidine and spermine are maturation factors that can reproduce, in immature rats, the same increase in intestinal glycoprotein galactosylation that is normally observed during weaning. They also suggest that the maturation of glycoprotein galactosylation may be a multifactorial event in which spermidine and spermine are both involved.
The aim of this study was to determine the role of polyamines in the diet-related maturation of the intestinal glycoprotein glycosylation during postnatal development in the rat. The activity of alpha-2,6-sialyltransferase and the sialylated forms of glycoproteins in the intestinal brush-border membranes were found to decrease considerably after weaning, in parallel with the intestinal level of putrescine. By contrast, the activity of alpha-1,2-fucosyltransferases, the mRNA levels for two alpha-1,2-fucosyltransferase genes, FTA and FTB, and the fucosylated forms of glycoproteins all increased after weaning, in parallel with the levels of spermidine and spermine. These results suggest a possible role of polyamines in the evolution of glycosylation. The treatment of suckling rats with spermidine or spermine reproduced the high intestinal levels of these polyamines corresponding to those normally found after weaning. After these treatments, a rise in the activity of the alpha-1,2-fucosyltransferase was observed, associated with a fall in alpha-L-fucosidase activity. The alpha-1,2-fucosyltransferase FTB gene was found to be regulated at the transcriptional level, but not by its inhibitor, fuctinin. The result of these variations was the precocious appearance of several alpha-1,2-fucoproteins, which are normally found in brush-border membranes after weaning. The treatment of suckling rats with putrescine, which induced only a transitory rise in intestinal putrescine, had a similar but weaker effect on the fucosylation process than spermidine or spermine, and treatment with ornithine was ineffective. alpha-2,6-Sialylation was not affected by any of the treatments. Spermidine and spermine turned out to be more effective than putrescine for intestinal glycoprotein fucosylation, but did not affect their sialylation. Spermidine and spermine, whose intestinal levels where found to increase at weaning time, may have been partly responsible for the natural evolution of the intestinal glycoprotein fucosylation that occurred during this period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.