Apixaban is a new oral anticoagulant with a specific inhibitory action on FXa. No information is available on the reversal of the antihemostatic action of apixaban in experimental or clinical settings. We have evaluated the effectiveness of different factor concentrates at reversing modifications of hemostatic mechanisms induced by moderately elevated concentrations of apixaban (200 ng/ml) added in vitro to blood from healthy donors (n = 10). Effects on thrombin generation (TG) and thromboelastometry (TEM) parameters were assessed. Modifications in platelet adhesive, aggregating and procoagulant activities were evaluated in studies with blood circulating through damaged vascular surfaces, at a shear rate of 600 s−1. The potential of prothrombin complex concentrates (PCCs; 50 IU/kg), activated prothrombin complex concentrates (aPCCs; 75 IU/kg), or activated recombinant factor VII (rFVIIa; 270 μg/kg), at reversing the antihemostatic actions of apixaban, were investigated. Apixaban interfered with TG kinetics. Delayed lag phase, prolonged time to peak and reduced peak values, were improved by the different concentrates, though modifications in TG patterns were diversely affected depending on the activating reagents. Apixaban significantly prolonged clotting times (CTs) in TEM studies. Prolongations in CTs were corrected by the different concentrates with variable efficacies (rFVIIa≥aPCC>PCC). Apixaban significantly reduced fibrin and platelet interactions with damaged vascular surfaces in perfusion studies (p<0.05 and p<0.01, respectively). Impairments in fibrin formation were normalized by the different concentrates. Only rFVIIa significantly restored levels of platelet deposition. Alterations in hemostasis induced by apixaban were variably compensated by the different factor concentrates investigated. However, effects of these concentrates were not homogeneous in all the tests, with PCCs showing more efficacy in TG, and rFVIIa being more effective on TEM and perfusion studies. Our results indicate that rFVIIa, PCCs and aPCCs have the potential to restore platelet and fibrin components of the hemostasis previously altered by apixaban.
There is a link between depression, cardiovascular events and inflammation. We have explored this connection through endothelial dysfunction, using in vivo and in vitro approaches. We evaluated circulating biomarkers of endothelial dysfunction in patients with major depression at their diagnosis (MD-0) and during antidepressant treatment with the selective serotonin reuptake inhibitor escitalopram, for 8 and 24 weeks (MD-8 and MD-24). Results were always compared with matched healthy controls (CON). We measured in vivo circulating endothelial cells (CECs) and endothelial progenitor cells (EPCs) in blood samples, and assessed plasma levels of soluble von Willebrand factor (VWF) and vascular cell adhesion molecule-1 (VCAM-1). CEC counts, soluble VWF and VCAM-1 were statistically elevated in MD-0 (P<0.01 versus CON) and gradually decreased during treatment. Conversely, EPC levels were lower in MD-0, tending to increase throughout treatment. In vitro studies were performed in human endothelial cells cultured in the presence of sera from each study group. Elevated expression of the inflammation marker intercellular adhesion molecule-1 and oxidative stress, with lower presence of endothelial nitric oxide synthase and higher reactive oxygen species production, were found in cells exposed to MD-0 sera (P<0.05 versus CON). These results were normalized in cells exposed to MD-24 sera. Thrombogenicity of extracellular matrices generated by these cells, measured as expression of VWF, tissue factor and platelet reactivity, showed non-significant differences. We provide a model of cultured endothelial cells reproducing endothelial dysfunction in naive patients with major depression, demonstrating endothelial damage and inflammation at diagnosis, and recovering with selective serotonin reuptake inhibitor treatment for 24 weeks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.