As part of a programme in which quantum state reduction is understood as a gravitational phenomenon, we consider the Schrödinger-Newton equations. For a single particle, this is a coupled system consisting of the Schrödinger equation for the particle moving in its own gravitational field, where this is generated by its own probability density via the Poisson equation. Restricting to the spherically-symmetric case, we find numerical evidence for a discrete family of solutions, everywhere regular, and with normalizable wavefunctions. The solutions are labelled by the non-negative integers, the nth solution having n zeros in the wavefunction. Furthermore, these are the only globally defined solutions. Analytical support is provided for some of the features found numerically.
Background: Voice disorders affect patients profoundly, and acoustic tools can potentially measure voice function objectively. Disordered sustained vowels exhibit wide-ranging phenomena, from nearly periodic to highly complex, aperiodic vibrations, and increased "breathiness". Modelling and surrogate data studies have shown significant nonlinear and non-Gaussian random properties in these sounds. Nonetheless, existing tools are limited to analysing voices displaying near periodicity, and do not account for this inherent biophysical nonlinearity and non-Gaussian randomness, often using linear signal processing methods insensitive to these properties. They do not directly measure the two main biophysical symptoms of disorder: complex nonlinear aperiodicity, and turbulent, aeroacoustic, non-Gaussian randomness. Often these tools cannot be applied to more severe disordered voices, limiting their clinical usefulness.
Simple chaotic systems are useful tools for testing methods for use in numerical weather simulations owing to their transparency and computational cheapness. The Lorenz system was used here; the full system was defined as ‘truth’, whereas a truncated version was used as a testbed for parametrization schemes. Several stochastic parametrization schemes were investigated, including additive and multiplicative noise. The forecasts were started from perfect initial conditions, eliminating initial condition uncertainty. The stochastically generated ensembles were compared with perturbed parameter ensembles and deterministic schemes. The stochastic parametrizations showed an improvement in weather and climate forecasting skill over deterministic parametrizations. Including a temporal autocorrelation resulted in a significant improvement over white noise, challenging the standard idea that a parametrization should only represent sub-gridscale variability. The skill of the ensemble at representing model uncertainty was tested; the stochastic ensembles gave better estimates of model uncertainty than the perturbed parameter ensembles. The forecasting skill of the parametrizations was found to be linked to their ability to reproduce the climatology of the full model. This is important in a seamless prediction system, allowing the reliability of short-term forecasts to provide a quantitative constraint on the accuracy of climate predictions from the same system.
The Schrödinger-Newton (S-N) equations were proposed by Penrose [18] as a model for gravitational collapse of the wave-function. The potential in the Schrödinger equation is the gravity due to the density of |ψ| 2 , where ψ is the wave-function. As with normal Quantum Mechanics the probability, momentum and angular momentum are conserved. We first consider the spherically symmetric case, here the stationary solutions have been found numerically by Moroz et al [15] and Jones et al [3]. The ground state which has the lowest energy has no zeros. The higher states are such that the (n + 1)th state has n zeros. We consider the linear stability problem for the stationary states, which we numerically solve using spectral methods. The ground state is linearly stable since it has only imaginary eigenvalues. The higher states are linearly unstable having imaginary eigenvalues except for n quadruples of complex eigenvalues for the (n + 1)th state, where a quadruple consists of {λ,λ, −λ, −λ}. Next we consider the nonlinear evolution, using a method involving an iteration to calculate the potential at the next time step and Crank-Nicolson to evolve the Schrödinger equation. To absorb scatter we use a sponge factor which reduces the reflection back from the outer boundary condition and we show that the numerical evolution converges for different mesh sizes and time steps. Evolution of the ground state shows it is stable and added perturbations oscillate at frequencies determined by the linear perturbation theory. The higher states are shown to be unstable, emitting scatter and leaving a rescaled ground state. The rate at which they decay is controlled by the complex eigenvalues of the linear perturbation. Next we consider adding another dimension in two different ways: by considering the axisymmetric case and the 2-D equations. The stationary solutions are found. We modify the evolution method and find that the higher states are unstable. In 2-D case we consider rigidly rotationing solutions and show they exist and are unstable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.