Straightforward path to curved graphene molecules: distorted polycyclic aromatic hydrocarbons including heptagon moieties are obtained from simple precursors.
This feature article focuses on the bottom-up approaches (solution-phase) based on organic synthesis for the preparation of saddle-shaped distorted polycyclic aromatic hydrocarbons (PAHs). We summarise the recent progress on the synthetic strategies followed to obtain well-defined nanographenes containing heptagonal and octagonal carbocycles, highlighting the novel strategy developed by our group together with our recent contributions in the area of distorted aromatics. The presence of seven- or eight-membered rings induces a saddle-shape curvature in the planar network pushing the structure out of the plane, which influences the physical properties exhibited. Some brief details on the optical and electronic properties of these curved nanostructures are also discussed.
A new family of distorted ribbon‐shaped nanographenes was designed, synthesized, and their optical and electrochemical properties were evaluated, pointing out an unprecedented correlation between their structural characteristics and the two‐photon absorption (TPA) responses and electrochemical band gaps. Three nanographene ribbons have been prepared: a seven‐membered‐ring‐containing nanographene presenting a tropone moiety at the edge, its full‐carbon analogue, and a purely hexagonal one. We have found that the TPA cross‐sections and the electrochemical band gaps of the seven‐membered‐ring‐containing compounds are higher and lower, respectively, than those of the fully hexagonal polycyclic aromatic hydrocarbon (PAH). Interestingly, the inclusion of additional curvature has a positive effect in terms of non‐linear optical properties of those ribbons.
Using the break junction (BJ) technique we show that 'Au(RS)2' units play a significant role in thiol-terminated molecular junctions formed on gold. We have studied a range of thiol-terminated compounds, either with the sulfur atoms in direct conjugation with a phenyl core, or bonded to saturated methylene groups. For all molecules we observe at least two distinct groups of conductance plateaus. By a careful analysis of the length behavior of these plateaus, comparing the behavior across the different cores and with methyl sulfide anchor groups, we demonstrate that the lower conductance groups correspond to the incorporation of Au(RS)2 oligomeric units at the contacts. These structural motifs are found on the surface of gold nanoparticles but they have not before been shown to exist in molecular-break junctions. The results, while exemplifying the complex nature of thiol chemistry on gold, moreover clarify the conductance of 1,4-benzenedithiol on gold. We show that true Au-S-Ph-S-Au junctions have a relatively narrow conductance distribution, centered at a conductance of log(G/G0) = -1.7 (± 0.4).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.