Acute myocardial infarction (AMI) is a leading cause of morbidity and mortality. Reperfusion strategies are the current standard therapy for AMI. However, they may result in paradoxical cardiomyocyte dysfunction, known as ischemic reperfusion injury (IRI). Different forms of IRI are recognized, of which only the first two are reversible: reperfusion-induced arrhythmias, myocardial stunning, microvascular obstruction, and lethal myocardial reperfusion injury. Sudden death is the most common pattern for ischemia-induced lethal ventricular arrhythmias during AMI. The exact mechanisms of IRI are not fully known. Molecular, cellular, and tissue alterations such as cell death, inflammation, neurohumoral activation, and oxidative stress are considered to be of paramount importance in IRI. However, comprehension of the exact pathophysiological mechanisms remains a challenge for clinicians. Furthermore, myocardial IRI is a critical issue also for forensic pathologists since sudden death may occur despite timely reperfusion following AMI, that is one of the most frequently litigated areas of cardiology practice. In this paper we explore the literature regarding the pathophysiology of myocardial IRI, focusing on the possible role of the calpain system, oxidative-nitrosative stress, and matrix metalloproteinases and aiming to foster knowledge of IRI pathophysiology also in terms of medicolegal understanding of sudden deaths following AMI.
Oxidative stress in heart failure or during ischemia/reperfusion occurs as a result of the excessive generation or accumulation of free radicals or their oxidation products. Free radicals formed during oxidative stress can initiate lipid peroxidation, oxidize proteins to inactive states and cause DNA strand breaks. Oxidative stress is a condition in which oxidant metabolites exert toxic effects because of their increased production or an altered cellular mechanism of protection. In the early phase of acute heart ischemia cytokines have the feature to be functional pleiotropy and redundancy, moreover, several cytokines exert similar and overlapping actions on the same cell type and one cytokine shows a wide range of biological effects on various cell types. Activation of cytokine cascades in the infarcted myocardium was established in numerous studies. In experimental models of myocardial infarction, induction and release of the pro-inflammatory cytokines like TNF-α (Tumor Necrosis Factor α), IL-1β (Interleukin- 1β) and IL-6 (Interleukin-6) and chemokines are steadily described. The current review examines the role of oxidative stress and pro-inflammatory cytokines response following acute myocardial infarction and explores the inflammatory mechanisms of cardiac injury.
Cocaine is a powerful stimulant of the sympathetic nervous system by inhibiting catecholamine reuptake, stimulating central sympathetic outflow, and increasing the sensitivity of adrenergic nerve endings to norepinephrine (NE). It is known, from numerous studies, that cocaine causes irreversible structural changes on the brain, heart, lung and other organs such as liver and kidney and there are many mechanisms involved in the genesis of these damages. Some effects are determined by the overstimulation of the adrenergic system. Most of the direct toxic effects are mediated by oxidative stress and by mitochondrial dysfunction produced during the metabolism of noradrenaline or during the metabolism of norcocaina, as in cocaine-induced hepathotoxicity. Cocaine is responsible for the coronary arteries vasoconstriction, atherosclerotic phenomena and thrombus formation. In this way, cocaine favors the myocardial infarction. While the arrhythmogenic effect of cocaine is mediated by the action on potassium channel (blocking), calcium channels (enhances the function) and inhibiting the flow of sodium during depolarization. Moreover chronic cocaine use is associated with myocarditis, ventricular hypertrophy, dilated cardiomyopathy and heart failure. A variety of respiratory problems temporally associated with crack inhalation have been reported. Cocaine may cause changes in the respiratory tract as a result of its pharmacologic effects exerted either locally or systemically, its method of administration (smoking, sniffing, injecting), or its alteration of central nervous system neuroregulation of pulmonary function. Renal failure resulting from cocaine abuse has been also well documented. A lot of studies demonstrated a high incidence of congenital cardiovascular and brain malformations in offspring born to mothers with a history of cocaine abuse.
We report two cases of sudden cardiac death (SCD) involving previously healthy bodybuilders who were chronic androgenic-anabolic steroids users. In both instances, autopsies, histology of the organs, and toxicologic screening were performed. Our findings support an emerging consensus that the effects of vigorous weight training, combined with anabolic steroid use and increased androgen sensitivity, may predispose these young men to myocardial injury and even SCD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.