Disruption of neuronal morphology contributes to the pathology of neurodegenerative disorders such as Alzheimer's disease (AD). However, the underlying molecular mechanisms are unknown. Here, we show that postnatal deletion of Cdh1, a cofactor of the anaphasepromoting complex/cyclosome (APC/C) ubiquitin ligase in neurons [Cdh1 conditional knockout (cKO)], disrupts dendrite arborization and causes dendritic spine and synapse loss in the cortex and hippocampus, concomitant with memory impairment and neurodegeneration, in adult mice. We found that the dendrite destabilizer Rho protein kinase 2 (Rock2), which accumulates in the brain of AD patients, is an APC/C Cdh1 substrate in vivo and that Rock2 protein and activity increased in the cortex and hippocampus of Cdh1 cKO mice. In these animals, inhibition of Rock activity, using the clinically approved drug fasudil, prevented dendritic network disorganization, memory loss, and neurodegeneration. Thus, APC/C Cdh1 -mediated degradation of Rock2 maintains the dendritic network, memory formation, and neuronal survival, suggesting that pharmacological inhibition of aberrantly accumulated Rock2 may be a suitable therapeutic strategy against neurodegeneration.APC/C Cdh1 | Rock | dendrite | memory | neurodegeneration
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.