The source and sink potential model is used to predict the existence of omni-conductors (and omniinsulators): molecular conjugated π systems that respectively support ballistic conduction or show insulation at the Fermi level, irrespective of the centres chosen as connections. Distinct, ipso, and strong omni-conductors/omni-insulators show Fermi-level conduction/insulation for all distinct pairs of connections, for all connections via a single centre, and for both, respectively. The class of conduction behaviour depends critically on the number of non-bonding orbitals (NBO) of the molecular system (corresponding to the nullity of the graph). Distinct omni-conductors have at most one NBO; distinct omni-insulators have at least two NBO; strong omni-insulators do not exist for any number of NBO. Distinct omni-conductors with a single NBO are all also strong and correspond exactly to the class of graphs known as nut graphs. Families of conjugated hydrocarbons corresponding to chemical graphs with predicted omni-conducting/insulating behaviour are identified. For example, most fullerenes are predicted to be strong omni-conductors. © 2014 AIP Publishing LLC.
Abstract. Characterization of singular graphs can be reduced to the non-trivial solutions of a system of linear homogeneous equations Ax = 0 for the 0-1 adjacency matrix A. A graph G is singular of nullity η(G) ≥ 1, if the dimension of the nullspace ker(A) of its adjacency matrix A is η(G). Necessary and sufficient conditions are determined for a graph to be singular in terms of admissible induced subgraphs.
Articles you may be interested in PHYSICS 143, 194105 (2015) A new approach to the method of source-sink potentials for molecular conduction We re-derive the tight-binding source-sink potential (SSP) equations for ballistic conduction through conjugated molecular structures in a form that avoids singularities. This enables derivation of new results for families of molecular devices in terms of eigenvectors and eigenvalues of the adjacency matrix of the molecular graph. In particular, we define the transmission of electrons through individual molecular orbitals (MO) and through MO shells. We make explicit the behaviour of the total current and individual MO and shell currents at molecular eigenvalues. A rich variety of behaviour is found. A SSP device has specific insulation or conduction at an eigenvalue of the molecular graph (a root of the characteristic polynomial) according to the multiplicities of that value in the spectra of four defined device polynomials. Conduction near eigenvalues is dominated by the transmission curves of nearby shells. A shell may be inert or active. An inert shell does not conduct at any energy, not even at its own eigenvalue. Conduction may occur at the eigenvalue of an inert shell, but is then carried entirely by other shells. If a shell is active, it carries all conduction at its own eigenvalue. For bipartite molecular graphs (alternant molecules), orbital conduction properties are governed by a pairing theorem. Inertness of shells for families such as chains and rings is predicted by selection rules based on node counting and degeneracy. C 2015 AIP Publishing LLC. [http://dx
A nut graph is a singular graph with one-dimensional kernel and corresponding eigenvector with no zero elements. The problem of determining the orders n for which d-regular nut graphs exist was recently posed by Gauci, Pisanski and Sciriha. These orders are known for d ≤ 4. Here we solve the problem for all remaining cases d ≤ 11 and determine the complete lists of all dregular nut graphs of order n for small values of d and n. The existence or non-existence of small regular nut graphs is determined by a computer search. The main tool is a construction that produces, for any d-regular nut graph of order n, another d-regular nut graph of order n + 2d. If we are given a sufficient number of d-regular nut graphs of consecutive orders, called seed graphs, this construction may be applied in such a way that the existence of all d-regular nut graphs of higher orders is established. For even d the orders n are indeed consecutive, while for odd d the orders n are consecutive even numbers. Furthermore, necessary conditions for combinations of order and degree for vertex-transitive nut graphs are derived.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.