Maintenance of genome integrity requires the functional interplay between Fanconi anemia (FA) and homologous recombination (HR) repair pathways. Endogenous acetaldehyde, a product of cellular metabolism, is a potent source of DNA damage, particularly toxic to cells and mice lacking the FA protein FANCD2. Here, we investigate whether HR‐compromised cells are sensitive to acetaldehyde, similarly to FANCD2‐deficient cells. We demonstrate that inactivation of HR factors BRCA1, BRCA2, or RAD51 hypersensitizes cells to acetaldehyde treatment, in spite of the FA pathway being functional. Aldehyde dehydrogenases (ALDHs) play key roles in endogenous acetaldehyde detoxification, and their chemical inhibition leads to cellular acetaldehyde accumulation. We find that disulfiram (Antabuse), an ALDH2 inhibitor in widespread clinical use for the treatment of alcoholism, selectively eliminates BRCA1/2‐deficient cells. Consistently, Aldh2 gene inactivation suppresses proliferation of HR‐deficient mouse embryonic fibroblasts (MEFs) and human fibroblasts. Hypersensitivity of cells lacking BRCA2 to acetaldehyde stems from accumulation of toxic replication‐associated DNA damage, leading to checkpoint activation, G2/M arrest, and cell death. Acetaldehyde‐arrested replication forks require BRCA2 and FANCD2 for protection against MRE11‐dependent degradation. Importantly, acetaldehyde specifically inhibits in vivo the growth of BRCA1/2‐deficient tumors and ex vivo in patient‐derived tumor xenograft cells (PDTCs), including those that are resistant to poly (ADP‐ribose) polymerase (PARP) inhibitors. The work presented here therefore identifies acetaldehyde metabolism as a potential therapeutic target for the selective elimination of BRCA1/2‐deficient cells and tumors.
A mild calcium catalysed Beckmann rearrangement has been realised, which forgoes the more traditional harsh reactions conditions associated with the transformation. The catalyst system is shown to be tolerant towards a wide variety of functional groups relevant to natural product synthesis and medicinal chemistry and the synthetic utility of the reaction has also been investigated. A preliminary mechanistic investigation was performed to understand the nature of the incoming nucleophile and a possible reaction pathway is described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.