Nowadays the development of stable and highly efficient Solid-Contact Ion-Selective Electrodes (SC-ISEs) attracts much attention in the research community because of the great expansion of portable analytical devices. In this work, we present highly stable Li all-solid-state ISEs exploiting noble metals nanostructures as ion-to-electron transducers. The detection of lithium is essential for therapeutic drug monitoring of bipolar patients. In addition, greater environmental exposure to this ion is occurring due to the large diffusion of lithium-ion batteries. However, only a limited number of SC Li ISEs already exists in literature based on Conductive Polymers (CPs) and carbon nanotubes. The use of noble metals for ion-to-electron transduction offers considerable advantages over CPs and carbon materials, including fast and conformal one-step deposition by electrochemical means, non-toxicity and high stability. We investigate for the first time the use of gold nanocorals obtained by means of a one-step electrodeposition process to improve sensor performance and we compare it to all-solid-state ISEs based on electrodeposited platinum nanoflowers. In addition, the effect of substrate electrode material, membrane thickness and conditioning concentration on the potentiometric response is carefully analysed. Scanning Electron Microscopy (SEM) and Current Reversal Chronopotentiometry (CRC) techniques are used to characterize the morphology and the electrochemical behaviour of the different ISEs. The use of nanostructured gold and platinum contacts allows the increase of the SC capacitance by one or two orders of magnitude, respectively, with respect to the flat metal, while the SC resistance is significantly reduced. We show that the microfabricated sensors offer Nernstian behaviour (58.7±0.8 mV/decade) in the activity range from 10 to 0.1 M, with short response time (∼15 s) and small potential drift during CRC measurements (dEdt=3×10±2×10 V/s). The exceptional response stability is verified also when no potential is applied. The sensor shows high selectivity towards all clinically important ions, with values very similar to conventional ISEs. Furthermore, to our knowledge, the selectivity towards Ca is the best ever reported for SC-ISEs. In conclusion, the present study opens up new interesting perspectives towards the development of simple and reproducible fabrication protocols to obtain high-quality and high-stability all-solid-state ISEs.
This paper describes the electrochemical investigation of two multi-walled carbon nanotube-based electrodes using potassium ferricyanide as a benchmark redox system. Carbon nanotubes were fabricated by chemical vapor deposition on silicon wafer with camphor and ferrocene as precursors. Vertically-aligned as well as islands of horizontally-randomly-oriented carbon nanotubes were obtained by varying the growth parameters. Cyclic voltammetry was the employed method for this electrochemical study. Vertical nanotubes showed a slightly higher kinetic. Regarding the sensing parameters we found a sensitivity for vertical nanotubes almost equal to the sensitivity obtained with horizontally/randomly oriented nanotubes (71.5 ± 0.3 μA/(mM cm 2 ) and 62.8± 0.3 μA/(mM cm 2 ), respectively). In addition, values of detection limit are of the same order of magnitude. Although tip contribution to electron emission has been shown to be greatly larger than the lateral contribution on single carbon nanotubes per unit area, the new findings reported in this paper demonstrate that the global effects of nanotube surface on potassium ferricyanide electrochemistry are comparable for these two types of nanostructured surfaces.
Novel methods to obtain Pt nanostructured electrodes have raised particular interest due to their high performance in electrochemistry. Several nanostructuration methods proposed in the literature use costly and bulky equipment or are time-consuming due to the numerous steps they involve. Here, Pt nanostructures were produced for the first time by one-step template-free electrodeposition on Pt bare electrodes. The change in size and shape of the nanostructures is proven to be dependent on the deposition parameters and on the ratio between sulphuric acid and chloride-complexes (i.e., hexachloroplatinate or tetrachloroplatinate). To further improve the electrochemical properties of electrodes, depositions of Pt nanostructures on previously synthesised Pt nanostructures are also performed. The electroactive surface areas exhibit a two order of magnitude improvement when Pt nanostructures with the smallest size are used. All the biosensors based on Pt nanostructures and immobilised glucose oxidase display higher sensitivity as compared to bare Pt electrodes. Pt nanostructures retained an excellent electrocatalytic activity towards the direct oxidation of glucose. Finally, the nanodeposits were proven to be an excellent solid contact for ion measurements, significantly improving the time-stability of the potential. The use of these new nanostructured coatings in electrochemical sensors opens new perspectives for multipanel monitoring of human metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.