Much evidence has accumulated to suggest that many animals, including young human infants, possess an abstract sense of approximate quantity, a number sense. Most research has concentrated on apparent numerosity of spatial arrays of dots or other objects, but a truly abstract sense of number should be capable of encoding the numerosity of any set of discrete elements, however displayed and in whatever sensory modality. Here, we use the psychophysical technique of adaptation to study the sense of number for serially presented items. We show that numerosity of both auditory and visual sequences is greatly affected by prior adaptation to slow or rapid sequences of events. The adaptation to visual stimuli was spatially selective (in external, not retinal coordinates), pointing to a sensory rather than cognitive process. However, adaptation generalized across modalities, from auditory to visual and vice versa. Adaptation also generalized across formats: adapting to sequential streams of flashes affected the perceived numerosity of spatial arrays. All these results point to a perceptual system that transcends vision and audition to encode an abstract sense of number in space and in time.
Humans and other species have perceptual mechanisms dedicated to estimating approximate quantity: a sense of number. Here we show a clear interaction between self-produced actions and the perceived numerosity of subsequent visual stimuli. A short period of rapid finger-tapping (without sensory feedback) caused subjects to underestimate the number of visual stimuli presented near the tapping region; and a period of slow tapping caused overestimation. The distortions occurred both for stimuli presented sequentially (series of flashes) and simultaneously (clouds of dots); both for magnitude estimation and forced-choice comparison. The adaptation was spatially selective, primarily in external, real-world coordinates. Our results sit well with studies reporting links between perception and action, showing that vision and action share mechanisms that encode numbers: a generalized number sense, which estimates the number of self-generated as well as external events.DOI: http://dx.doi.org/10.7554/eLife.16161.001
Magnitude information is essential to create a representation of the external environment and successfully interact with it. Duration and numerosity, for example, can shape our predictions and bias each other (i.e. the greater the number of people queuing, the longer we expect to wait). While these biases suggest the existence of a generalized magnitude system, asymmetric effects (i.e. numerosity affecting duration but not vice versa) challenged this idea. Here, we propose that such asymmetric integration depends on the stimuli used and the neural processing dynamics they entail. Across multiple behavioural experiments employing different stimulus presentation displays (static versus dynamic) and experimental manipulations known to bias numerosity and duration perceptions (i.e. connectedness and multisensory integration), we show that the integration between numerosity and time can be symmetrical if the stimuli entail a similar neural time-course and numerosity unfolds over time. Overall, these findings support the idea of a generalized magnitude system, but also highlight the role of early sensory processing in magnitude representation and integration.
Humans and other animals are able to make rough estimations of quantities using what has been termed the approximate number system (ANS). Much evidence suggests that sensitivity to numerosity correlates with symbolic math capacity, leading to the suggestion that the ANS may serve as a start-up tool to develop symbolic math. Many experiments have demonstrated that numerosity perception transcends the sensory modality of stimuli and their presentation format (sequential or simultaneous), but it remains an open question whether the relationship between numerosity and math generalizes over stimulus format and modality. Here we measured precision for estimating the numerosity of clouds of dots and sequences of flashes or clicks, as well as for paired comparisons of the numerosity of clouds of dots. Our results show that in children, formal math abilities correlate positively with sensitivity for estimation and paired-comparisons of the numerosity of visual arrays of dots. However, precision of numerosity estimation for sequences of flashes or sounds did not correlate with math, although sensitivities in all estimations tasks (for sequential or simultaneous stimuli) were strongly correlated with each other. In adults, we found no significant correlations between math scores and sensitivity to any of the psychophysical tasks. Taken together these results support the existence of a generalized number sense, and go on to demonstrate an intrinsic link between mathematics and perception of spatial, but not temporal numerosity.
The perception of a visual event (e.g., a flock of birds) at the present moment can be biased by a previous perceptual experience (e.g., the perception of an earlier flock). Serial dependence is a perceptual bias whereby a current stimulus appears more similar to a previous one than it actually is. Whereas serial dependence emerges within several visual stimulus dimensions, whether it could simultaneously operate across different dimensions of the same stimulus (e.g., the numerosity and the duration of a visual pattern) remains unclear.Here we address this question by assessing the presence of serial dependence across duration and numerosity, two stimulus dimensions that are often associated and can bias each other. Participants performed either a duration or a numerosity discrimination task, in which they compared a constant reference with a variable test stimulus, varying along the task-relevant dimension (either duration or numerosity). Serial dependence was induced by a task-irrelevant inducer, that is, a stimulus presented before the reference and always varying in both duration and numerosity. The results show systematic serial dependencies only within the task-relevant stimulus dimension, that is, stimulus numerosity affects numerosity perception only, and duration affects duration perception only. Additionally, at least in the numerosity condition, the task-irrelevant dimension of the inducer (duration) had an opposite, repulsive effect. These findings thus show that attractive serial dependence operates in a highly specific fashion and does not transfer across different stimulus dimensions. Instead, the repulsive influence, possibly reflecting perceptual adaptation, can transfer from one dimension to another.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.