We study copying of machine learning classifiers, an agnostic technique to replicate the decision behavior of any classifier. We develop the theory behind the problem of copying, highlighting its properties, and propose a framework to copy the decision behavior of any classifier using no prior knowledge of its parameters or training data distribution. We validate this framework through extensive experiments using data from a series of well-known problems. To further validate this concept, we use three different use cases where desiderata such as interpretability, fairness or productivization constrains need to be addressed. Results show that copies can be exploited to enhance existing solutions and improve them adding new features and characteristics.
We study model-agnostic copies of machine learning classifiers, new models that replicate the decision behavior of any classifier. We develop the theory behind the problem of copying, highlighting its differences with that of learning, and propose a framework to copy the functionality of any classifier using no prior knowledge of its parameters or training data distribution. We validate this framework through extensive experiments using data from a series of well-known problems. To further validate this concept, we use three different use cases where desiderata such as interpretability, fairness or productivization constrains need to be addressed. Results show that copies can be exploited to enhance existing solutions and improve them adding new features and characteristics.
When deployed in the wild, machine learning models are usually confronted with an environment that imposes severe constraints. As this environment evolves, so do these constraints. As a result, the feasible set of solutions for the considered need is prone to change in time. We refer to this problem as that of environmental adaptation. In this paper, we formalize environmental adaptation and discuss how it differs from other problems in the literature. We propose solutions based on differential replication, a technique where the knowledge acquired by the deployed models is reused in specific ways to train more suitable future generations. We discuss different mechanisms to implement differential replications in practice, depending on the considered level of knowledge. Finally, we present seven examples where the problem of environmental adaptation can be solved through differential replication in real-life applications.
Machine learning plays an increasingly important role in our society and economy and is already having an impact on our daily life in many different ways. From several perspectives, machine learning is seen as the new engine of productivity and economic growth. It can increase the business efficiency and improve any decision-making process, and of course, spawn the creation of new products and services by using complex machine learning algorithms. In this scenario, the lack of actionable accountability-related guidance is potentially the single most important challenge facing the machine learning community. Machine learning systems are often composed of many parts and ingredients, mixing third party components or software-as-a-service APIs, among others. In this paper we study the role of copies for risk mitigation in such machine learning systems. Formally, a copy can be regarded as an approximated projection operator of a model into a target model hypothesis set. Under the conceptual framework of actionable accountability, we explore the use of copies as a viable alternative in circumstances where models cannot be re-trained, nor enhanced by means of a wrapper. We use a real residential mortgage default dataset as a use case to illustrate the feasibility of this approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.