BackgroundNeck pain is a major health issue with high rates of recurrence. It presents with a variety of altered sensorimotor functions. Exercise is a cornerstone of rehabilitation and many training methods are used. Exercise is evaluated in most randomized controlled trials on its pain relieving effects. No review has assessed the effect of exercise on the altered physiological functions or determined if there are differential effects of particular training methods. This review investigated the effects of deep cervical flexor (DCF) training, a training method commonly used for patients with neck pain, and compared it to other training methods or no training on outcomes of cervical neuromuscular function, muscle size, kinematics and kinetics.MethodsWeb of Science, Scopus, CINAHL, PubMed were searched from inception until January 2018. Twelve randomized controlled trials were included that compared DCF training as sole intervention to other training or no interventions in persons with neck pain. The Cochrane Risk of Bias tool was used to assess the method quality. All outcome measures were analysed descriptively and meta-analyses were performed for measures evaluated in three or more studies.ResultsDCF training was compared to cervical endurance, strength, proprioception and mobility training, muscle stretching, and no intervention control groups. Physiological outcome measures included neuromuscular co-ordination (craniocervical flexion test), functional tasks, muscle fatigability, muscle size, kinematics (joint position sense, posture and range of motion) and kinetics (strength, endurance and contraction accuracy). Strong evidence was found for effectiveness of DCF training on neuromuscular coordination, but it had no or small effects on strength and endurance at higher loads. DCF training improved head and cervical posture, while evidence was limited or contradictory for other measures.ConclusionsDCF training can successfully address impaired neuromuscular coordination, but not cervical flexor strength and endurance at higher contraction intensities. A multimodal training regime is proposed when the aim is to specifically address various impaired physiological functions associated with neck pain.
Background: About a third of home-dwelling older people fall each year, and institutionalized older people even report a two- or threefold higher rate for falling. Automatic fall detection systems have been developed to support the independent and secure living of the elderly. Even though good fall detection sensitivity and specificity in laboratory settings have been reported, knowledge about the sensitivity and specificity of these systems in real-life conditions is still lacking. Objective: The aim of this study was to evaluate the long-term fall detection sensitivity and false alarm rate of a fall detection prototype in real-life use. Methods: A total of 15,500 h of real-life data from 16 older people, including both fallers and nonfallers, were monitored using an accelerometry-based sensor system with an implemented fall detection algorithm. Results: The fall detection system detected 12 out of 15 real-life falls, having a sensitivity of 80.0%, with a false alarm rate of 0.049 alarms per usage hour with the implemented real-time system. With minor modification of data analysis the false alarm rate was reduced to 0.025 false alarms per hour, equating to 1 false fall alarm per 40 usage hours. Conclusion: These data suggest that automatic accelerometric fall detection systems might offer a tool for improving safety among older people.
Receiving self-care advice rather than referral to a general practitioner influences patient satisfaction negatively. Feeling reassured after consultation is strongly related to satisfaction, which in turn has been found to increase the likelihood of engaging in self-care behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.