Bacteria are highly diverse and drive a bulk of ecosystem processes. Analysis of relationships between diversity and single specific ecosystem processes neglects the possibility that different species perform multiple functions at the same time. The degradation of dissolved organic carbon (DOC) followed by respiration is a key bacterial function that is modulated by the availability of DOC and the capability to produce extracellular enzymes. In freshwater ecosystems, biofilms are metabolic hotspots and major sites of DOC degradation. We manipulated the diversity of biofilm forming communities which were fed with DOC differing in availability. We characterized community composition using molecular fingerprinting (T-RFLP) and measured functioning as oxygen consumption rates, the conversion of DOC in the medium, bacterial abundance and the activities of five specific enzymes. Based on assays of the extracellular enzyme activity, we calculated how the likelihood of sustaining multiple functions was affected by reduced diversity. Carbon source and biofilm age were strong drivers of community functioning, and we demonstrate how the likelihood of sustaining multifunctionality decreases with decreasing diversity.
River and stream biofilms in mediterranean fluvial ecosystems face both extreme seasonality as well as arrhythmic fluctuations. The hydrological extremes (droughts and floods) impose direct changes in water availability but also in the quantity and quality of organic matter and nutrients that sustain the microbial growth. This review analyzes how these ecological pulses might determine unique properties of biofilms developing in mediterranean streams. The paper brings together data from heterotrophic and autotrophic community structure, and extracellular enzyme activities in biofilms in mediterranean streams. Mediterranean stream biofilms show higher use of peptides during the favorable period for epilithic algae development (spring), and preferential use of cellulose and hemicellulose in autumn as a response to allochthonous input. The drying process causes the reduction in bacterial production and chlorophyll biomass, but the rapid recovery of both autotrophs and heterotrophs with rewetting indicates their adaptability to fluctuations. Bacteria surviving the drought are mainly associated with sediment and leaf litter which serve as "humid refuges". Some algae and cyanobacteria show resistant strategies to cope with the drought stress. The resistance to these fluctuations is strongly linked to the streambed characteristics (e.g., sediment grain size, organic matter accumulation, nutrient content)This study was funded by the projects CGL2011-30151-C02-01, and SCARCE (Consolider-Ingenio 2010 CSD2009-00065) of the Spanish Ministry of Economy and Competitiveness; the Italy-Spain Exchange Project CNR-CSIC 2006IT0010; and the EU project MIRAGE (FP7-ENV-2007-1 n.211732
We have studied the differences in the organic matter processing and biofilm composition and structure between autoheterotrophic and heterotrophic biofilm communities. Microbial communities grown on artificial biofilms were monitored, following incubation under light and dark conditions and with or without the addition of glucose as a labile organic compound. Glucose addition greatly affected the microbial biofilm composition as shown by differences in 16S rRNA gene fingerprints. A significant increase in b-glucosidase and peptidase enzyme activities were also observed in glucose-amended biofilms incubated in the dark, suggesting an active bacterial community. Light enhanced the algal and bacterial growth, as well as higher extracellular enzyme activity, thereby indicating a tight algal-bacterial coupling in biofilms incubated under illumination. In these biofilms, organic compounds excreted by photosynthetic microorganisms were readily available for bacterial heterotrophs. This algal-bacterial relationship weakened in glucose-amended biofilms grown in the light, probably because heterotrophic bacteria preferentially use external labile compounds. These results suggest that the availability of labile organic matter in the flowing water and the presence of light may alter the biofilm composition and function, therefore affecting the processing capacity of organic matter in the stream ecosystem.
Mediterranean streams are characterized by water flow changes caused by floods and droughts. When intermittency occurs in river ecosystems, hydrologic connectivity is interrupted and this affects benthic, hyporheic and flowing water compartments. Organic matter use and transport can be particularly affected during the transition from wet to dry and dry to wet conditions. In order to characterize the changes in benthic organic matter quantity and quality throughout a drying and rewetting process, organic matter, and enzyme activities were analyzed in the benthic accumulated material (biofilms growing on rocks and cobbles, leaves, and sand) and in flowing water (dissolved and particulate fractions). The total polysaccharide, amino acid, and lipid content in the benthic organic matter were on average higher in the drying period than in the rewetting period. However, during the drying period, peptide availability decreased, as indicated by decreases in leucine aminopeptidase activity, as well as amino acid content in the water and benthic material, except leaves; while polysaccharides were actively used, as indicated by an increase in b-glucosidase activity in the benthic substrata and an increase in polysaccharide content of the particulate water fraction and in leaf material. During this process, microbial heterotrophs were constrained to use the organic matter source of the lowest quality (polysaccharides, providing only C), since peptides (providing N and C) were no longer available. During the flow recovery phase, the microbial community rapidly recovered, suggesting the use of refuges and/or adaptation to desiccation during the previous drought period. The scouring during rewetting was responsible for the mobilization of the streambed and loss of benthic material, and the increase in high quality organic matter in transport (at that moment, polysaccharides and amino acids accounted for 30% of the total DOC). The dynamics of progressive and gradual drought effects, as well as the fast recovery after rewetting, might be affected by the interaction of the individual dynamics of each benthic substratum: sand sediments and leaves providing refuge for microorganisms and organic matter storage, while on cobbles, an active bacterial community is developed in the rewetting. Since global climate change may favor a higher intensity and frequency of droughts in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.