Social communication has evolved, with e-mail still being one of the most common communication means, used for both formal and informal ways. With many languages being digitized for the electronic world, the use of English is still abundant. However, various native languages of different regions are emerging gradually. The Urdu language, coming from South Asia, mostly Pakistan, is also getting its pace as a medium for communications used in social media platforms, websites, and emails. With the increased usage of emails, Urdu’s number and variety of spam content also increase. Spam emails are inappropriate and unwanted messages usually sent to breach security. These spam emails include phishing URLs, advertisements, commercial segments, and a large number of indiscriminate recipients. Thus, such content is always a hazard for the user, and many studies have taken place to detect such spam content. However, there is a dire need to detect spam emails, which have content written in Urdu language. The proposed study utilizes the existing machine learning algorithms including Naive Bayes, CNN, SVM, and LSTM to detect and categorize e-mail content. According to our findings, the LSTM model outperforms other models with a highest score of 98.4% accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.