The bacterial Sec translocase in its minimal form consists of a membrane-embedded protein-conducting pore SecYEG that interacts with the motor protein SecA to mediate the translocation of secretory proteins. In addition, the SecYEG translocon interacts with the accessory SecDFyajC membrane complex and the membrane protein insertase YidC. To examine the composition of the native lipid environment in the vicinity of the SecYEG complex and its impact on translocation activity, styrene-maleic acid lipid particles (SMALPs) were used to extract SecYEG with its lipid environment directly from native Escherichia coli membranes without the use of detergents. This allowed the co-extraction of SecYEG in complex with SecA, but not with SecDFyajC or YidC. Lipid analysis of the SecYEG-SMALPs revealed an enrichment of negatively charged lipids in the vicinity of SecYEG, which in detergent assisted reconstitution of the Sec translocase are crucial for the translocation activity. Such lipid enrichment was not found with separately extracted SecDFyajC or YidC, which demonstrates a specific interaction between SecYEG and negatively charged lipids.
AAA+ proteases are degradation machines that use ATP hydrolysis to unfold protein substrates and translocate them through a central pore towards a degradation chamber. FtsH, a bacterial membrane-anchored AAA+ protease, plays a vital role in membrane protein quality control. How substrates reach the FtsH central pore is an open key question that is not resolved by the available atomic structures of cytoplasmic and periplasmic domains. In this work, we used both negative stain TEM and cryo-EM to determine 3D maps of the full-length Aquifex aeolicus FtsH protease. Unexpectedly, we observed that detergent solubilisation induces the formation of fully active FtsH dodecamers, which consist of two FtsH hexamers in a single detergent micelle. The striking tilted conformation of the cytosolic domain in the FtsH dodecamer visualized by negative stain TEM suggests a lateral substrate entrance between membrane and cytosolic domain. Such a substrate path was then resolved in the cryo-EM structure of the FtsH hexamer. By mapping the available structural information and structure predictions for the transmembrane helices to the amino acid sequence we identified a linker of ~20 residues between the second transmembrane helix and the cytosolic domain. This unique polypeptide appears to be highly flexible, and turned out to be essential for proper functioning of FtsH as its deletion fully eliminated the proteolytic activity of FtsH.
a b s t r a c tSecYEG functions as a membrane channel for protein export. SecY constitutes the proteinconducting pore, which is enwrapped by SecE in a V-shaped manner. In its minimal form SecE consists of a single transmembrane segment that is connected to a surface-exposed amphipathic a-helix via a flexible hinge. These two domains are the major sites of interaction between SecE and SecY. Specific cleavage of SecE at the hinge region, which destroys the interaction between the two SecE domains, reduced translocation. When SecE and SecY were disulfide bonded at the two sites of interaction, protein translocation was not affected. This suggests that the SecY and SecE interactions are static, while the hinge region provides flexibility to allow the SecY pore to open.
The majority of proteins that are secreted across the bacterial cytoplasmic membrane leave the cell via the Sec pathway, which in its minimal form consists of the dimeric ATP-driven motor protein SecA that associates with the protein-conducting membrane pore SecYEG. Some Gram-positive bacteria contain two homologues of SecA, termed SecA1 and SecA2. SecA1 is the essential housekeeping protein, whereas SecA2 is not essential but is involved in the translocation of a subset of proteins, including various virulence factors. Some SecA2 containing bacteria also harbor a homologous SecY2 protein that may form a separate translocase. Interestingly, mycobacteria contain only one SecY protein and thus both SecA1 and SecA2 are required to interact with SecYEG, either individually or together as a heterodimer. In order to address whether SecA1 and SecA2 cooperate during secretion of SecA2 dependent proteins, we examined the oligomeric state of SecA1 and SecA2 of Mycobacterium tuberculosis and their interactions with SecA2 and the cognate SecA1, respectively. We conclude that both SecA1 and SecA2 individually form homodimers in solution but when both proteins are present simultaneously, they form dissociable heterodimers.
The Sec system is present in all bacteria and responsible for the translocation of the majority of proteins across the cytoplasmic membrane. The system consists of two principal components: the ATPase motor protein, SecA, and the protein-conducting channel, SecYEG. In addition to this canonical Sec system, several Gram-positive bacteria also possess a so-called accessory Sec system. This is a specialized translocation system that is responsible for the export of a subset of secretory proteins, including virulence factors. The accessory Sec system consists of a second SecA paralog, termed SecA2, with or without a second SecY paralog, termed SecY2. In some bacteria, the accessory Sec system is dependent on the canonical Sec system for functionality, while in other bacteria, they can function independently. In this review, we provide an overview of the current knowledge of the canonical and accessory Sec system of Gram-positive bacteria with a focus on the primary component of the Sec translocase, SecA and SecYEG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.