In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
Auditory neuropathy is a form of hearing loss in which cochlear inner hair cells fail to correctly encode or transmit acoustic information to the brain. Few genes have been implicated in the adult-onset form of this disease. Here we show that mice lacking the transcription factor Foxo3 have adult onset hearing loss with the hallmark characteristics of auditory neuropathy, namely, elevated auditory thresholds combined with normal outer hair cell function. Using histological techniques, we demonstrate that Foxo3-dependent hearing loss is not due to a loss of cochlear hair cells or spiral ganglion neurons, both of which normally express Foxo3. Moreover, Foxo3-knock-out (KO) inner hair cells do not display reductions in numbers of synapses. Instead, we find that there are subtle structural changes in and surrounding inner hair cells. Confocal microscopy in conjunction with 3D modeling and quantitative analysis show that synaptic localization is altered in Foxo3-KO mice and Myo7a immunoreactivity is reduced. TEM demonstrates apparent afferent degeneration. Strikingly, acoustic stimulation promotes Foxo3 nuclear localization in vivo, implying a connection between cochlear activity and synaptic function maintenance. Together, these findings support a new role for the canonical damage response factor Foxo3 in contributing to the maintenance of auditory synaptic transmission.
RNA-seq is a high-throughput sequencing technology widely used for gene transcript discovery and quantification under different biological or biomedical conditions. A fundamental research question in most RNA-seq experiments is the identification of differentially expressed genes among experimental conditions or sample groups. Numerous statistical methods for RNA-seq differential analysis have been proposed since the emergence of the RNA-seq assay. To evaluate popular differential analysis methods used in the open source R and Bioconductor packages, we conducted multiple simulation studies to compare the performance of eight RNA-seq differential analysis methods used in RNA-seq data analysis (edgeR, DESeq, DESeq2, baySeq, EBSeq, NOISeq, SAMSeq, Voom). The comparisons were across different scenarios with either equal or unequal library sizes, different distribution assumptions and sample sizes. We measured performance using false discovery rate (FDR) control, power, and stability. No significant differences were observed for FDR control, power, or stability across methods, whether with equal or unequal library sizes. For RNA-seq count data with negative binomial distribution, when sample size is 3 in each group, EBSeq performed better than the other methods as indicated by FDR control, power, and stability. When sample sizes increase to 6 or 12 in each group, DESeq2 performed slightly better than other methods. All methods have improved performance when sample size increases to 12 in each group except DESeq. For RNA-seq count data with log-normal distribution, both DESeq and DESeq2 methods performed better than other methods in terms of FDR control, power, and stability across all sample sizes. Real RNA-seq experimental data were also used to compare the total number of discoveries and stability of discoveries for each method. For RNA-seq data analysis, the EBSeq method is recommended for studies with sample size as small as 3 in each group, and the DESeq2 method is recommended for sample size of 6 or higher in each group when the data follow the negative binomial distribution. Both DESeq and DESeq2 methods are recommended when the data follow the log-normal distribution.
RNA-seq is a high-throughput sequencing technology widely used for gene transcript discovery and quantification under different biological or biomedical conditions. A fundamental research question in most RNA-seq experiments is the identification of differentially expressed genes among experimental conditions or sample groups. Numerous statistical methods for RNA-seq differential analysis have been proposed since the emergence of the RNA-seq assay. To evaluate popular differential analysis methods used in the open source R and Bioconductor packages, we conducted multiple simulation studies to compare the performance of eight RNA-seq differential analysis methods used in RNA-seq data analysis (edgeR, DESeq, DESeq2, baySeq, EBSeq, NOISeq, SAMSeq, Voom). The comparisons were across different scenarios with either equal or unequal library sizes, different distribution assumptions and sample sizes. We measured performance using false discovery rate (FDR) control, power, and stability. No significant differences were observed for FDR control, power, or stability across methods, whether with equal or unequal library sizes. For RNA-seq count data with negative binomial distribution, when sample size is 3 in each group, EBSeq performed better than the other methods as indicated by FDR control, power, and stability. When sample sizes increase to 6 or 12 in each group, DESeq2 performed slightly better than other methods. All methods have improved performance when sample size increases to 12 in each group except DESeq. For RNA-seq count data with log-normal distribution, both DESeq and DESeq2 methods performed better than other methods in terms of FDR control, power, and stability across all sample sizes. Real RNA-seq experimental data were also used to compare the total number of discoveries and stability of discoveries for each method. For RNA-seq data analysis, the EBSeq method is recommended for studies with sample size as small as 3 in each group, and the DESeq2 method is recommended for sample size of 6 or higher in each group when the data follow the negative binomial distribution. Both DESeq and DESeq2 methods are recommended when the data follow the log-normal distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.