Pakistan is vulnerable to climate change, and extreme climatic conditions are threatening food security. This study examines the effects of climate change (e.g., maximum temperature, minimum temperature, rainfall, relative humidity, and the sunshine) on the major crops of Pakistan (e.g., wheat, rice, maize, and sugarcane). The methods of feasible generalized least square (FGLS) and heteroscedasticity and autocorrelation (HAC) consistent standard error were employed using time series data for the period 1989 to 2015. The results of the study reveal that maximum temperature adversely affects wheat production, while the effect of minimum temperature is positive and significant for all crops. Rainfall effect towards the yield of a selected crop is negative, except for wheat. To cope with and mitigate the adverse effects of climate change, there is a need for the development of heat- and drought-resistant high-yielding varieties to ensure food security in the country.
Abstract:Multiclass semantic image segmentation is widely used in a variety of computer vision tasks, such as object segmentation and complex scene understanding. As it decomposes an image into semantically relevant regions, it can be applied in segmentation of face images. In this paper, an algorithm based on multiclass semantic segmentation of faces is proposed using conditional random fields. In the proposed model, each node corresponds to a superpixel, while the neighboring superpixels are connected to nodes through edges. Unlike previous approaches, which rely on three or four classes, the label set is extended here to six classes, i.e. hair, eyes, nose, mouth, skin, and background. The proposed framework is evaluated on standard face databases FASSEG, FIGARO, and LFW. Experimental results reveal that the performance of the proposed model is comparable with state-of-the-art techniques on these standard databases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.