Bone is the single most frequent site for bone metastasis in breast cancer patients. Patients with bone-only metastasis have a fairly good prognosis when compared with patients with visceral disease. Nevertheless, cancer-induced bone disease carries an important risk of developing skeletal related events that impact quality of life (QoL). It is therefore particularly important to stratify patients according to their risk of developing bone metastasis. In this context, several risk factors have been studied, including demographic, clinicopathological, genetic, and metabolic factors. Most of them show conflicting or non-definitive associations and are not validated for clinical use. Nonetheless, tumour intrinsic subtype is widely accepted as a major risk factor for bone metastasis development and luminal breast cancer carries an increased risk for bone disease. Other factors such as gene signatures, expression of specific cytokines (such as bone sialoprotein and bone morphogenetic protein 7) or components of the extracellular matrix (like bone crosslinked C-telopeptide) might also influence the development of bone metastasis. Knowledge of risk factors related with bone disease is of paramount importance as it might be a prediction tool for triggering the use of targeted agents and allow for better patient selection for future clinical trials.
The osteolytic nature of bone metastasis results from a tumor-driven increased bone resorption. Bone remodeling is orchestrated by the molecular triad RANK-RANKL-OPG. This process is dysregulated in bone metastases, mostly via induction of RANKL by tumor-derived factors. These factors increase expression of RANKL, which induce osteoclast formation, function, and survival, thereby increasing bone resorption. RANK is unexpectedly expressed by cancer cells, and the activation of RANKL-RANK pathway correlates with an increased invasive phenotype. To investigate the interaction between RANK expression in human breast and prostate cancer cells and their pro-metastatic phenotype we analyzed the activation of RANKL-RANK pathway and its effects on cell migration, invasion, gene expression in vitro, and osteolysis-inducing ability in vivo. RANKL activates kinase signaling pathways, stimulates cell migration, increases cell invasion, and up-regulates MMP-1 expression. In vivo, MMP-1 knockdown resulted in smaller x-ray osteolytic lesions and osteoclastogenesis, and decreased tumor burden. Therefore, RANKL inhibition in bone metastatic disease may decrease the levels of the osteoclastogenesis inducer MMP-1, contributing to a better clinical outcome.
Bone metastasis is a frequent finding in the natural history of several types of cancers. However, its anticipated risk, diagnosis and response to therapy are still challenging to assess in clinical practice. Markers of bone metabolism are biochemical by-products that provide insight into the tumor-bone interaction, with potential to enhance the clinical management of patients with bone metastases. In fact, these markers had a cornerstone role in the development of bone-targeted agents; however, its translation to routine practice is still unclear, as reflected by current international guidelines. In this review, we aimed to capture several of the research and clinical translational challenges regarding the use of bone metabolism markers that we consider relevant for future research in bone metastasis.
Bone metastases ultimately result from a complex interaction between cancer cells and bone microenvironment. However, prior to the colonization of the bone, cancer cells must succeed through a series of steps that will allow them to detach from the primary tumor, enter into circulation, recognize and adhere to specific endothelium, and overcome dormancy. We now know that as important as the metastatic cascade, tumor cells prime the secondary organ microenvironment prior to their arrival, reflecting the existence of specific metastasis-initiating cells in the primary tumor and circulating osteotropic factors. The deep comprehension of the molecular mechanisms of bone metastases may allow the future development of specific anti-tumoral therapies, but so far the approved and effective therapies for bone metastatic disease are mostly based in bone-targeted agents, like bisphosphonates, denosumab and, for prostate cancer, radium-223. Bisphosphonates and denosumab have proven to be effective in blocking bone resorption and decreasing morbidity; furthermore, in the adjuvant setting, these agents can decrease bone relapse after breast cancer surgery in postmenopausal women. In this review, we will present and discuss some examples of applied knowledge from the bench to the bed side in the field of bone metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.