Several studies implicated cyclic adenosine monophosphate (cAMP) as an important second messenger for regulating nociceptor sensitization, but downstream targets of this signaling pathway which contribute to neuronal plasticity are not well understood. We used a Cre/loxP-based strategy to disable the function of either HCN2 or PKA selectively in a subset of peripheral nociceptive neurons and analyzed the nociceptive responses in both transgenic lines. A near-complete lack of sensitization was observed in both mutant strains when peripheral inflammation was induced by an intradermal injection of 8br-cAMP. The lack of HCN2 as well as the inhibition of PKA eliminated the cAMP-mediated increase of calcium transients in dorsal root ganglion neurons. Facilitation of Ih via cAMP, a hallmark of the Ih current, was abolished in neurons without PKA activity. Collectively, these results show a significant contribution of both genes to inflammatory pain and suggest that PKA-dependent activation of HCN2 underlies cAMP-triggered neuronal sensitization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.