This paper introduces a new substrate for reverse-phase protein microarray applications based on macroporous silicon. A key feature of the microarray substrate is the vastly surface enlarging properties of the porous silicon, which simultaneously offers highly confined microarray spots. The proof of principle of the reverse array concept was demonstrated in the detection of different levels of cyclin E, a possible cancer biomarker candidate which regulates G1-S transition and correlates with poor prognosis in different types of human cancers. The substrate properties were studied performing analysis of total cyclin E expression in human colon cancer cell lines Hct116 and SW480. The absence of unspecific binding and good microarray quality was demonstrated. In order to verify the performance of the 3-D textured macroporous surface for complex biological samples, lysates of the human tissue spiked to different levels with cell extract overproducing cyclin E (Hct116) were arrayed on the chip surface. The samples were spotted in a noncontact mode in 100 pL droplets with spots sizes ranged between 50 and 70 mum and spot-to-spot center distances 100 mum, allowing microarray spot densities up to 14 000 spots per cm(2). The different sample types of increasing complexities did not have any impact on the spot intensities recorded and the protein spots showed good homogeneity and reproducibility over the recorded microarrays. The data demonstrate the potential use of macroporous silicon as a substrate for quantitative determination of a cancer biomarker cyclin E in tissue lysates.
Purpose: Several molecules involved in cancer biology have been studied as potential prognostic markers. Recently, overexpression of cyclin E and its low-molecular-weight (LMW) isoforms has been reported to be the most prominent prognostic marker in breast cancer, surpassing proliferation index, ploidy, and axillary nodal involvement. Furthermore, cyclin E and p53 are considered the main factors controlling the euploid equilibrium in human cells. We investigated the status of cyclin E and p53 in cell lines and tissue samples of colorectal cancer, one of the leading causes of death from a tumor in the Western world.Experimental design: We analyzed colorectal cancer cells, from established cell lines and patient specimens, to determine the protein levels of cyclin E and p53, and to detect p53 and APC mutations, microsatellite and chromosome instability. In addition, we assessed the presence of cyclin E LMW isoforms and their enzymatic activity.Results: Colorectal cancer cells expressed hyperactive LMW forms both in vitro and in vivo. These tumor-specific isoforms are correlated to genomic instability even in p53-proficient cells, and represented a constant feature in the tumors analyzed.Conclusions: In colorectal cancer, the formation of cyclin E LMW forms is an early event leading to DNA-damage checkpoint-independent proliferation. Collectively, our results provide evidence that evaluation of LMW forms could represent a novel tool in the molecular characterization of colorectal tumors aimed at identifying sensitive prognostic factors and uncovering subsets of high-risk patients within the traditional categories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.