We found that inhibitors of mitochondrial respiratory chain complexes III (myxothiazol) and I (piericidin A) in some epithelial carcinoma cell lines induce transcription of the p53-responsive SESN2 gene that plays an important role in stress response and homeostatic regulation. However, the effect did not depend on p53 because i) there was no induction of p53 after the treatment with piericidin A; ii) after the treatment with myxothiazol the peak of SESN2 gene upregulation occurred as early as 5h, before the onset of p53 activation (13h); iii) a supplementation with uridine that abolishes the p53 activation in response to myxothiazol did not abrogate the induction of SESN2 transcripts; iv) in the p53 negative HCT116 p53 -/- cells SESN2 transcription could be also induced by myxothiazol. In response to the respiratory chain inhibitors we observed an induction of ATF4, the key transcription factor of the integrated stress response (ISR). We found that the induction of SESN2 transcripts could be prevented by the ISR inhibitory small molecule ISRIB. Also, by inhibiting or overexpressing ATF4 with specific shRNA or ATF4-expressing constructs, respectively, we have confirmed the role of ATF4 in the SESN2 gene upregulation induced by mitochondrial dysfunction. At a distance of 228 bp upstream from the SESN2 transcription start site we found a candidate sequence for the ATF4 binding site and confirmed its requirement for the induction of SESN2 in luciferase reporter experiments. We suggest that the upregulation of SESN2 by mitochondrial dysfunction provides a homeostatic feedback that attenuates biosynthetic processes during temporal losses of energy supply from mitochondria thereby assisting better adaptation and viability of cells in hostile environments.
Generation of energy in mitochondria is subjected to physiological regulation at many levels, and its malfunction may result in mitochondrial diseases. Mitochondrial dysfunction is associated with different environmental influences or certain genetic conditions, and can be artificially induced by inhibitors acting at different steps of the mitochondrial electron transport chain (ETC). We found that a short-term (5 h) inhibition of ETC complex III with myxothiazol results in the phosphorylation of translation initiation factor eIF2α and upregulation of mRNA for the activating transcription factor 4 (ATF4) and several ATF4-regulated genes. The changes are characteristic for the adaptive integrated stress response (ISR), which is known to be triggered by unfolded proteins, nutrient and metabolic deficiency, and mitochondrial dysfunctions. However, after a prolonged incubation with myxothiazol (13–17 h), levels of ATF4 mRNA and ATF4-regulated transcripts were found substantially suppressed. The suppression was dependent on the p53 response, which is triggered by the impairment of the complex III-dependent de novo biosynthesis of pyrimidines by mitochondrial dihydroorotate dehydrogenase. The initial adaptive induction of ATF4/ISR acted to promote viability of cells by attenuating apoptosis. In contrast, the induction of p53 upon a sustained inhibition of ETC complex III produced a pro-apoptotic effect, which was additionally stimulated by the p53-mediated abrogation of the pro-survival activities of the ISR. Interestingly, a sustained inhibition of ETC complex I by piericidine did not induce the p53 response and stably maintained the pro-survival activation of ATF4/ISR. We conclude that a downregulation of mitochondrial ETC generally induces adaptive pro-survival responses, which are specifically abrogated by the suicidal p53 response triggered by the genetic risks of the pyrimidine nucleotide deficiency.
The ATF4 transcription factor is a key regulator of the adaptive integrated stress response (ISR) induced by various stresses and pathologies. Identification of novel transcription targets of ATF4 during ISR would contribute to the understanding of adaptive networks and help to identify novel therapeutic targets. We were previously searching for genes that display an inverse regulation mode by the transcription factors ATF4 and p53 in response to mitochondrial respiration chain complex III inhibition. Among the selected candidates the human genes for cytokeratine 16 (KRT16), anti-apoptotic protein Niban (FAM129A) and hexokinase HKDC1 have been found highly responsive to ATF4 overexpression. Here we explored potential roles of the induction of KRT16, FAM129A and HKDC1 genes in ISR. As verified by RT-qPCR, a dysfunction of mitochondrial respiration chain and ER stress resulted in a partially ATF4-dependent stimulation of KRT16, FAM129A and HKDC1 expression in the HCT116 colon carcinoma cell line. ISRIB, a specific inhibitor of ISR, was able to downregulate the ER stress-induced levels of KRT16, FAM129A and HKDC1 transcripts. An inhibition of ATF4 by RNAi attenuated the induction of KRT16, FAM129A and HKDC1 mRNAs in response to ER stress or to a dysfunctional mitochondrial respiration. The similar induction of the three genes was observed in another tumor-derived cervical carcinoma cell line HeLa. However, in HaCaT and HEK293T cells that display transformed phenotypes, but do not originate from patient-derived tumors, the ER stress-inducing treatments resulted in an upregulation of FAM129A and HKDC1, but not KRT16 transcripts, By a luciferase reporter approach we identified a highly active ATF4-responsive element within the upstream region of the KRT16 gene. The results suggest a conditional regulation of KRT16 gene by ATF4 that may be inhibited in normal cells, but engaged during cancer progression. Potential roles of KRT16, FAM129A and HKDC1 genes upregulation in adaptive stress responses and pathologies are discussed.
To analyze protein degradation in mitochondria and the role of molecular chaperone proteins in this process, bovine apocytochrome P450scc was employed as a model protein. When imported into isolated yeast mitochondria, P450scc was mislocalized to the matrix and rapidly degraded. This proteolytic breakdown was mediated by the ATP-dependent PIM1 protease, a Lon-like protease in the mitochondrial matrix, in cooperation with the mtHsp70 system. In addition, a derivative of P450scc was studied to which a heterologous transmembrane region was fused at the amino terminus. This protein became anchored to the inner membrane upon import and was degraded by the membrane-embedded, ATP-dependent m-AAA protease. Again, degradation depended on the mtHsp70 system; it was inhibited at nonpermissive temperature in mitochondria carrying temperature-sensitive mutant forms of Ssc1p, Mdj1p, or Mge1p. These results demonstrate overlapping substrate specificities of PIM1 and the m-AAA protease, and they assign a central role to the mtHsp70 system during the degradation of misfolded polypeptides by both proteases.Molecular chaperone proteins bind non-native protein structures and stabilize them against aggregation (1). By this means, they ensure proper folding of newly synthesized proteins, provide protection against heat denaturation, and mediate the vectorial translocation of polypeptides across biological membranes (2-7). Furthermore, evidence is accumulating that chaperone proteins play a pivotal role in ATP-dependent proteolytic processes (8 -10). Chaperone and proteolytic activities thereby constitute a quality control system which prevents the possibly deleterious accumulation of misfolded polypeptides in the cell. For instance, the degradation of misfolded polypeptides by Lon-like proteases in Escherichia coli or mitochondria depends on Hsp70 proteins which prevent the aggregation of substrate polypeptides (11)(12)(13)(14)(15). In addition to classical chaperone proteins that cooperate with ATP-dependent proteases during proteolysis, intrinsic chaperone-like properties have been assigned to some ATP-dependent proteases themselves which may be crucial for the degradation of non-native polypeptides (9, 10). The best studied cases are the hetero-oligomeric Clp proteases of prokaryotes whose regulatory subunits exert ATP-dependent chaperone activity (16,17).Several ATP-dependent proteases have been identified in mitochondria, which mediate the selective degradation of proteins in this organelle (10, 18,19). These proteases are required for maintenance of the respiratory competence of yeast cells suggesting important regulatory functions during the biogenesis of mitochondria. An ATP-dependent protease, highly homologous to Escherichia coli Lon protease, has been identified in the mitochondrial matrix space (20, 21). The corresponding genes from humans (22, 23) and yeast (24, 25) were cloned and termed PIM1 (for proteolysis in mitochondria) or LON. PIM1-mediated proteolysis is required for the maintenance of mitochondrial genome integ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.