While the quest for understanding and even mimicking biological tissue has propelled, over the last decades, more and more experimental activities at the micro and nanoscales, the appropriate evaluation and interpretation of respective test results has remained a formidable challenge. As a contribution to tackling this challenge, we here describe a new method for identifying, from nanoindentation, the elasticity of the undamaged extracellular bone matrix. The underlying premise is that the tested bovine bone sample is either initially damaged (i.e. exhibits micro-cracks a priori) or that such micro-cracks are actually induced by the nanoindentation process itself, or both. Then, (very many) indentations may relate to either an intact material phase (which is located sufficiently far away from micro-cracks), or to differently strongly damaged material phases. Corresponding elastic phase properties are identified from the statistical evaluation of the measured indentation moduli, through representation of their histogram as a weighted sum of Gaussian distribution functions. The resulting undamaged elastic modulus of bovine femoral extracellular bone matrix amounts to 31 GPa, a value agreeing strikingly well both with direct quasi-static modulus tests performed on SEM-FIB-produced micro-pillars (Luczynski et al., 2015), and with the predictions of a widely validated micromechanics model (Morin and Hellmich, 2014). Further confidence is gained through observing typical indentation imprints under Scanning Electron Microscopy (SEM), which actually confirms the existence of the two types of micro-cracks as described above.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.